scholarly journals Effective Compressive Strengths of Corner and Edge Concrete Columns Based on an Adaptive Neuro-Fuzzy Inference System

2020 ◽  
Vol 10 (10) ◽  
pp. 3475
Author(s):  
Hae-Chang Cho ◽  
Seung-Ho Choi ◽  
Sun-Jin Han ◽  
Sang-Hoon Lee ◽  
Heung-Youl Kim ◽  
...  

In the current design codes, the effective compressive strength can be used to reflect decrease in load-transfer performance when upper/lower columns and slabs have different concrete compressive strengths. In this regard, this study proposed a method that can accurately estimate the effective compressive strengths by using an adaptive neuro-fuzzy inference system (ANFIS). The ANFIS is an algorithm that introduces a learning system that corrects errors into a fuzzy theory and has widely been used to solve problems with complex mechanisms. In order to constitute the ANFIS algorithm, 50 data randomly extracted from 75 existing test datasets were used in training, and 25 were used for verification. It was found that analysis using the ANFIS model provides a more accurate evaluation of the effective compressive strengths of corner and edge columns than do the equations specified in the current design codes. In addition, parametric studies were performed using the ANFIS model, and a simplified equation for calculating the effective compressive strength was proposed, so that it can be easily used in practice.

Author(s):  
Tu Trung Nguyen ◽  
Kien Dinh

An alternative method using Artificial Intelligence (AI) to predict the 28-day strength of concrete from its primary ingredients is presented in this research. A series of 424 data samples collected from a previous study were employed for developing, testing, and validation of Adaptive Neuro-Fuzzy Inference System (ANFIS) models. Seven mix parameters, namely Cement, Blast Furnace Slag, Fly Ash, Water, Superplasticizer, Coarse Aggregate, and Fine Aggregate were used as the inputs of the models while the output was the 28-day compressive strength of concrete. In the first step, different models with various input membership functions were explored and compared to obtain an optimal ANFIS model. In the second step, that model was utilized to predict the compressive strength value for each concrete sample, and to compare with those obtained from the compressive test in laboratory. The results showed that the selected ANFIS model can be used as a reliable tool for predicting the compressive strength of concrete with Root Mean Squared Error values of 5.97 MPa and 7.73 MPa, respectively, for the training and test sets. In addition, the sensitivity analysis results revealed that the accuracy of the proposed model improved with an increase in the number of input parameters/variables. Keywords: artificial intelligence; adaptive neuro-fuzzy inference system; concrete strength; sensitivity analysis.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Qiang Ye ◽  
Yi Xia ◽  
Zhiming Yao

A common feature that is typical of the patients with neurodegenerative (ND) disease is the impairment of motor function, which can interrupt the pathway from cerebrum to the muscle and thus cause movement disorders. For patients with amyotrophic lateral sclerosis disease (ALS), the impairment is caused by the loss of motor neurons. While for patients with Parkinson’s disease (PD) and Huntington’s disease (HD), it is related to the basal ganglia dysfunction. Previously studies have demonstrated the usage of gait analysis in characterizing the ND patients for the purpose of disease management. However, most studies focus on extracting characteristic features that can differentiate ND gait from normal gait. Few studies have demonstrated the feasibility of modelling the nonlinear gait dynamics in characterizing the ND gait. Therefore, in this study, a novel approach based on an adaptive neuro-fuzzy inference system (ANFIS) is presented for identification of the gait of patients with ND disease. The proposed ANFIS model combines neural network adaptive capabilities and the fuzzy logic qualitative approach. Gait dynamics such as stride intervals, stance intervals, and double support intervals were used as the input variables to the model. The particle swarm optimization (PSO) algorithm was utilized to learn the parameters of the ANFIS model. The performance of the system was evaluated in terms of sensitivity, specificity, and accuracy using the leave-one-out cross-validation method. The competitive classification results on a dataset of 13 ALS patients, 15 PD patients, 20 HD patients, and 16 healthy control subjects indicated the effectiveness of our approach in representing the gait characteristics of ND patients.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2771 ◽  
Author(s):  
Abbas Mardani ◽  
Dalia Streimikiene ◽  
Mehrbakhsh Nilashi ◽  
Daniel Arias Aranda ◽  
Nanthakumar Loganathan ◽  
...  

Understanding the relationships among CO2 emissions, energy consumption, and economic growth helps nations to develop energy sources and formulate energy policies in order to enhance sustainable development. The present research is aimed at developing a novel efficient model for analyzing the relationships amongst the three aforementioned indicators in G20 countries using an adaptive neuro-fuzzy inference system (ANFIS) model in the period from 1962 to 2016. In this regard, the ANFIS model has been used with prediction models using real data to predict CO2 emissions based on two important input indicators, energy consumption and economic growth. This study made use of the fuzzy rules through ANFIS to generalize the relationships of the input and output indicators in order to make a prediction of CO2 emissions. The experimental findings on a real-world dataset of World Development Indicators (WDI) revealed that the proposed model efficiently predicted the CO2 emissions based on energy consumption and economic growth. The direction of the interrelationship is highly important from the economic and energy policy-making perspectives for this international forum, as G20 countries are primarily focused on the governance of the global economy.


2020 ◽  
Vol 49 (4) ◽  
pp. 354-373
Author(s):  
Semih Kale

Abstract An accurate estimation of the sea surface temperature (SST) is of great importance. Therefore, the objective of this work was to develop an adaptive neuro-fuzzy inference system (ANFIS) model to predict SST in the Çanakkale Strait. The observed monthly air temperature, evaporation and precipitation data from the Çanakkale meteorological observation station were used as input data. The Takagi–Sugeno fuzzy inference system was applied. The grid partition method (ANFIS-GP) and the subtractive clustering partitioning method (ANFIS-SC) were used with Gaussian membership functions to generate the fuzzy inference system. Six performance evaluation criteria were used to evaluate the developed SST prediction models, including mean square error (MSE), root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), Nash-Sutcliffe efficiency (NSE) and correlation of determination (R2). The dataset was randomly divided into training and testing datasets for the machine learning process. Training data accounted for 75% of the dataset, while 25% of the dataset was allocated for testing in ANFIS. The hybrid algorithm was selected as a training algorithm for the ANFIS. Simulation results revealed that the ANFIS-SC4 model provided a higher correlation coefficient of 0.96 between the observed and predicted SST values. The results of this study suggest that the developed ANFIS model can be applied for predicting sea surface temperature around the world.


2019 ◽  
Vol 9 (4) ◽  
pp. 780 ◽  
Author(s):  
Khalid Elbaz ◽  
Shui-Long Shen ◽  
Annan Zhou ◽  
Da-Jun Yuan ◽  
Ye-Shuang Xu

The prediction of earth pressure balance (EPB) shield performance is an essential part of project scheduling and cost estimation of tunneling projects. This paper establishes an efficient multi-objective optimization model to predict the shield performance during the tunneling process. This model integrates the adaptive neuro-fuzzy inference system (ANFIS) with the genetic algorithm (GA). The hybrid model uses shield operational parameters as inputs and computes the advance rate as output. GA enhances the accuracy of ANFIS for runtime parameters tuning by multi-objective fitness function. Prior to modeling, datasets were established, and critical operating parameters were identified through principal component analysis. Then, the tunneling case for Guangzhou metro line number 9 was adopted to verify the applicability of the proposed model. Results were then compared with those of the ANFIS model. The comparison showed that the multi-objective ANFIS-GA model is more successful than the ANFIS model in predicting the advance rate with a high accuracy, which can be used to guide the tunnel performance in the field.


2011 ◽  
Vol 243-249 ◽  
pp. 6121-6126 ◽  
Author(s):  
Jing Xu ◽  
Xiu Li Wang

The purpose of this paper is to develop the Ⅰ-PreConS (Intelligent PREdiction system of CONcrete Strength) that predicts the compressive strength of concrete to improve the accuracy of concrete undamaged inspection. For this purpose, the system is developed with adaptive neuro-fuzzy inference system (ANFIS) that can learn cube test results as training patterns. ANFIS does not need a specific equation form differ from traditional prediction models. Instead of that, it needs enough input-output data. Also, it can continuously re-train the new data, so that it can conveniently adapt to new data. In the study, adaptive neuro-fuzzy inference system (ANFIS) based on Takagi-Sugeno rules is built up to prediction concrete strength. According to the expert experience, the relationship between the rebound value and concrete strength tends to power function. So the common logarithms of rebound value and strength value are used as the inputs and outputs of the ANFIS. System parameter sets are iteratively adjusted according to input and output data samples by a hybrid-learning algorithm. In the system, in order to improve of the ANFIS, condition parameter sets can be determined by the back propagation gradient descent method and conclusion parameter sets can be determined by the least squares method. As a result, the concrete strength can be inferred by the fuzzy inference. The method takes full advantage of the characteristics of the abilities of Fuzzy Neural Networks (FNN) including automatic learning, generation and fuzzy logic inference. The experiment shows that the average relative error of the predicted results is 10.316% and relative standard error is 12.895% over all the 508 samples, which are satisfied with the requirements of practical engineering. The ANFIS-based model is very efficient for prediction the compressive strength of in-service concrete.


Sign in / Sign up

Export Citation Format

Share Document