DEVELOPMENT AND RESEARCH OF POLYMER COMPOSITE MATERIAL WITH CEFAZOLIN BASED ON POLYURETHANE WITH ISOCYANURATE FRAGMENTS

2021 ◽  
Vol 43 (3) ◽  
pp. 214-225
Author(s):  
I.I. GLADYR ◽  
◽  
R.A. ROZHNOVA ◽  
L.F. NARAZHAYKO ◽  
L.YU. NECHAEVA ◽  
...  

Institute of Chemistry of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine Developed polymer composite material with Cefazolin based on polyurethane with isocyanurate fragments (PU), synthesized on the basis of polyoxypropylene glycol (POPG 1000), TDI (2,4;2,6-toluene diisocyanate) and 2,4,6-triisocyanate(trishexamethylene) isocyanate (ICC, Tolonate ™ HDT-LV, MM 1200) at a ratio of NCO: OH = 1: 1 in the medium N,N’-dimethylacetamide (DMAA) and Cefazolin (CFZ). CFZ is immobilized on isocyanurate-containing polyurethane by introducing a solution of CFZ with DMA into the reaction the amount of 5 wt. %. The synthesized polymeric material (PU-CFZ) represents a transparent film of yellow color with physical and mechanical characteristics: σ = 0,15 MPa; ε = 63.40%. According to IR spectroscopy, Cefazolin is immobilized on the polymer matrix by physically due to hydrogen interactions. The influence of biological medium 199 (BM 199) on the structure and properties of PU-CFZ during incubation for 1, 3 and 6 months was studied. It was found that after incubation in BM 199, the structure of PU-CFZ changes as a result of the interaction of enzyme molecules that are part of BM 199 with urethane and amide groups of PU. According to the results of physical and mechanical studies, after incubation in BM 199 for 6 months, PU-CFZ samples are characterized by tensile strength of 0.36 MPa and elongation at break of 98%, ie retain sufficient performance for use in biological objects for up to 6 months. Composite materials with Cefazolin are able to prolong the release of the drug for 28 days in an amount of about 30%, which is sufficient to provide a local therapeutic effect. According to the results of the cytotoxicity study of the developed material by in vitro tissue culture, it was found that the composite material based on isocyanurate-containing polyurethane with Cefazolin is biocompatible.

2021 ◽  
Vol 4 (12(112)) ◽  
pp. 61-70
Author(s):  
Volodymyr Dudin ◽  
Dmytro Makarenko ◽  
Oleksii Derkach ◽  
Yevhen Muranov

This paper reports a comprehensive laboratory study into the thermophysical, physical-mechanical characteristics, and tribological properties of the designed composite materials based on polytetrafluoroethylene. In the structures of machines and mechanisms, a significant role belongs to the tribological conjugations made from polymeric and polymer-composite materials. The reliability of machines, in general, depends to a large extent on the reliability of movable connections. Composite materials of nonmetallic origin have a low cost, they are resistant to most aggressive chemicals and are capable of operating under conditions without lubrication. It was established that the characteristics and properties of materials must be adapted to the working conditions of separately considered tribological conjugations. The mechanisms of thermal destruction have been established, both in the basic material and the carbon fiber based on it. It was found that carbon fiber, regardless of its content (quantity) in the polymer-composite material based on polytetrafluoroethylene, is mainly oriented perpendicular to the force application plane. It was found that with an increase in the carbon fiber content from 10 to 40 % by weight, the heat capacity decreases by 16‒39 % compared to the main material. The optimal operating modes for the designed composite materials have been substantiated on the basis of a pv factor: under a dry friction mode – up to 4 MPa∙m/s; at friction with lubrication – up to 36.4 MPa∙m/s. The dependence has been established of the friction coefficient on the operating modes of a composite material based on polytetrafluoroethylene containing 20 % by weight of carbon fiber when lubricated with oil and water. The results reported here make it possible to synthesize the physical-mechanical characteristics and tribological properties of composite materials in accordance with the required modes of tribological conjugation.


2019 ◽  
Vol 0 (2) ◽  
pp. 22-28
Author(s):  
A.M. Kudrin ◽  
◽  
O.A. Karaeva ◽  
K.S. Gabriel’s ◽  
◽  
...  

Author(s):  
G. F. Zhelezina ◽  
V. G. Bova ◽  
S. I. Voinov ◽  
A. Ch. Kan

The paper considers possibilities of using a hybrid fabric made of high-modulus carbon yarn brand ZhGV and high-strength aramid yarns brand Rusar-NT for polymer composites reinforcement. The results of studies of the physical and mechanical characteristics of hybrid composite material and values of the implementation of the strength and elasticity carbon fibers and aramid module for composite material are presented. 


Sign in / Sign up

Export Citation Format

Share Document