scholarly journals FORMATION OF THE INFORMATIONAL SUPPORTING FOR MANAGEMENT OF POWER GENERATION AND DELIVERY ON THE COGENERATION POWER PLANT IN THE LIBERALIZED ELECTRICITY MARKET

2021 ◽  
Vol 2021 (2) ◽  
pp. 67-76
Author(s):  
O. Kotsar ◽  
◽  
I. Rasko ◽  
◽  
◽  
...  

The liberalization of the electricity market aims at the most complete repletion of consumer needs for electricity and quality power supply, which requires the adaptive management of an energy using both by demand side and by the electricity producers – power plants. The successful solution of this task provides, in particular, for using the effective methods and reliable means for the formation of the informational support for the tasks of managing the power generation and delivery on the power plants in order to ensure conforming in real time the market power bids to current demand side asks. The article proposes a methodology, describes the implemented tools and analyzes the experience of managing the power generation and delivery on the cogeneration power plant based on the information which formed by the automated system for control, metering and energy management in the conditions of functioning of the liberalized electricity market of Ukraine. References 10, figures 5.

2019 ◽  
Vol 8 (4) ◽  
pp. 9449-9456

This paper proposes the reliability index of wind-solar hybrid power plants using the expected energy not supplied method. The location of this research is wind-solar hybrid power plants Pantai Baru, Bantul, Special Region of Yogyakarta, Indonesia. The method to determine the reliability of the power plant is the expected energy not supplied (EENS) method. This analysis used hybrid plant operational data in 2018. The results of the analysis have been done on the Pantai Baru hybrid power plant about reliability for electric power systems with EENS. The results of this study can be concluded that based on the load duration curve, loads have a load more than the operating kW of the system that is 99 kW. In contrast, the total power contained in the Pantai Baru hybrid power plant is 90 kW. This fact makes the system forced to release the load. The reliability index of the power system in the initial conditions, it produces an EENS value in 2018, resulting in a total value of 2,512% or 449 kW. The EENS value still does not meet the standards set by the National Electricity Market (NEM), which is <0.002% per year. Based on this data, it can be said that the reliability of the New Coast hybrid power generation system in 2018 is in the unreliable category.


Author(s):  
Washington Orlando Irrazabal Bohorquez ◽  
Joa˜o Roberto Barbosa

In the Ecuadorian electrical market, several sugar plants, which significantly participate in the local electricity market, are producing their own energy and commercializing the surplus to the electrical market. This study evaluates the integral use of the sugar cane bagasse for productive process on a Cogeneration Power Plant in an Ecuadorian Sugar Company [8]. The electrical generation based on biomass requires a great initial investment. The cost is around US$ 800/kW installed, twice the US$ 400/kW initial investment of conventional thermoelectric power plant and almost equal to the US$ 1,000/kW initial cost of hydroelectric power plant [5]. A thermoeconomic study was carried out on the production of electricity and the sales of the surplus of 27 MWe average produced by the power plant. An operational analysis was made using instantaneous values from the estimated curves of demand and generation of electricity. From the results, it was concluded that the generated electricity costs are 0.0443 US$/kWh, while the costs of the electricity from Fossil Power Plants (burning fuel oil, diesel fuel and natural gas) are in the range 0.03–0.15 US$/kWh and from Hydroelectric Plants are about 0.02 US$/kWh. Cogeneration power plants burning sugar cane bagasse could contribute to the mitigation of climatic change. This specific case study shows the reduction of the prospective emissions of greenhouse gases, around 55,188 ton of CO2 equivalent yearly for this cogeneration power plant.


2019 ◽  
Vol 23 (Suppl. 4) ◽  
pp. 1143-1151 ◽  
Author(s):  
Karol Sztekler ◽  
Wojciech Kalawa ◽  
Sebastian Stefanski ◽  
Jaroslaw Krzywanski ◽  
Karolina Grabowska ◽  
...  

At present, energy efficiency is a very important issue and it is power generation facilities, among others, that have to confront this challenge. The simultaneous production of electricity, heat and cooling, the so-called trigeneration, allows for substantial savings in the chemical energy of fuels. More efficient use of the primary energy contained in fuels translates into tangible earnings for power plants while reductions in the amounts of fuel burned, and of non-renewable resources in particular, certainly have a favorable impact on the natural environment. The main aim of the paper was to investigate the contribution of the use of adsorption chillers to improve the energy efficiency of a conventional power plant through the utilization of combined heat and power waste heat, involving the use of adsorption chillers. An adsorption chiller is an item of industrial equipment that is driven by low grade heat and intended to produce chilled water and desalinated water. Nowadays, adsorption chillers exhibit a low coefficient of performance. This type of plant is designed to increase the efficiency of the primary energy use. This objective as well as the conservation of non-renewable energy resources is becoming an increasingly important aspect of the operation of power generation facilities. As part of their project, the authors have modelled the cycle of a conventional heat power plant integrated with an adsorption chiller-based plant. Multi-variant simulation calculations were performed using IPSEpro simulation software.


Author(s):  
Joseph Benedict Bassey ◽  
Isaac F. Odesola

Aims: Reliability assessment of power generation system may be performed with the concept of system adequacy, security or both. Grid being a major component in the power distribution chain is seen to have some influence on the state of the generation system reliability because of the perturbation that may arise from it. In this study, the generation system reliability is evaluated using both the system adequacy and security concept. Study Design: To capture the system security problems attributed to grid disturbance, the generation system is structured into two component systems (1 - generation component and 2 - transmission component) with a series arrangement. Methodology: The reliability indices such as, mean time to failure, mean time to repair, failure rate and repair rate are assessed on component bases and with respect to the entire generation system. Results: The effect of failure rate of the transmission component on the entire generation system failure rate was evaluated as 66.25%, 55.55%, 33.33%, 55.00% and 35.72% in year 2013, 2014, 2017 2018 and 2019 respectively for FIPL Power Plant and 52.94%, 82.35%, 61.38% and 100% effect was evaluated in the year 2016, 2017, 2018 and 2019 respectively for GT5 of Omoku Power Plant. Conclusion: These results showed that there is a significant influence of grid disturbances on the reliability state of the two gas turbine power plants in Nigeria. Measures on possible reliability state improvement of the power generation systems were suggested to include training and retraining of technical personnel on the management of major equipment in the generation and transmission stations. 


2011 ◽  
Vol 382 ◽  
pp. 56-59
Author(s):  
Yong Hua Li ◽  
Jun Wang ◽  
Wei Ping Yan

In China, coal combustion to generate electric power is the primary method, the energy-saving and emission reduction is the urgent task. At present, the energy-saving dispatching trial method in some area evaluates energy-saving and emission reduction of coal combustion power generation according to power supply coal consumption rate only. But the power supply coal consumption rate can’t reflect the energy-saving and emission reduction effect of coal combustion power plant overall. For example, the same coal combustion unit, the coal consumption rate is difference when desulfuration system is operating or not; the coal consumption rate of the unit with SCR will be increased; the coal consumption rate of the air-cooled unit is higher than water-cooled unit; etc.. This paper considers synthetically coal consumption rate, pollution emission, water resource wastage, etc., establishes a integrated evaluation system, adopts factor analysis method, gets the integrated evaluation system and index of energy-saving and emission reduction of coal combustion power generation, evaluates energy-saving and emission reduction effect of 5 power plants reasonable. The results show that the index can reflect the energy-saving and emission reduction level of coal combustion power generation.


1987 ◽  
Vol 12 (2) ◽  
pp. 47-56 ◽  
Author(s):  
V Ranganathan ◽  
Damodar Mall

Galloping demand for power and mounting constraints in its generation have forced electricity boards all over the country to impose power cuts. User industries have been forced to go for captive power plants to tide over the situation. In this article, V Ranganathan and Damodar Mall compare captive power and grid power costs in Karnataka. At the observed low utilization of between 6 and 20 per cent, captive power cost is Rs 1.95 while grid power cost is only 31 paise per KWH. The authors argue that the user industries should pursue the options of cooperative generation of power or become a financing partner with the electricity boards for assured and reliable power supply.


Author(s):  
Moritz Hübel ◽  
Jens Hinrich Prause ◽  
Conrad Gierow ◽  
Egon Hassel ◽  
Raphael Wittenburg ◽  
...  

The increasing share of fluctuating renewable energy sources leads to changing requirements for conventional power plants. The changing characteristics of the residual load requires the conventional fleet to operate with higher load gradients, lower minimum load at improved efficiency levels as well as faster start-ups and provision of ancillary services. Despite the requirements from the electricity market, the value of improving those flexibility parameters is hard to evaluate for power plant operators. In order to quantify the additional benefit that can be achieved by improving flexibility parameters on a certain power plant in a changing market environment, an adjustable load dispatch model has developed for that purpose. Using past electricity market data, the model is validated for typical coal and a typical gas fired power plants by reproducing their operational schedule. In the next step, the model is used to apply parameter changes to the power plants specifications and economic effects are demonstrated. General statements are derived on which flexibility parameter needs to be improved on each power plant type. Furthermore, specific economic evaluations are shown for the reference power plants in order to present the ability of the developed tool to support investment decisions for modernization projects of existing power plants.


Author(s):  
Rolf H. Kehlhofer

In the past 15 years the combined-cycle (gas/steam turbine) power plant has come into its own in the power generation market. Today, approximately 30 000 MW of power are already installed or being built as combined-cycle units. Combined-cycle plants are therefore a proven technology, showing not only impressive thermal efficiency ratings of up to 50 percent in theory, but also proving them in practice and everyday operation (1) (2). Combined-cycle installations can be used for many purposes. They range from power plants for power generation only, to cogeneration plants for district heating or combined cycles with maximum additional firing (3). The main obstacle to further expansion of the combined cycle principle is its lack of fuel flexibility. To this day, gas turbines are still limited to gaseous or liquid fuels. This paper shows a viable way to add a cheap solid fuel, coal, to the list. The plant system in question is a 2 × 150 MW combined-cycle plant of BBC Brown Boveri with integrated coal gasification plant of British Gas/Lurgi. The main point of interest is that all the individual components of the power plant described in this paper have proven their worth commercially. It is therefore not a pilot plant but a viable commercial proposition.


Author(s):  
Stuart M. Cohen ◽  
John Fyffe ◽  
Gary T. Rochelle ◽  
Michael E. Webber

Coal consumption for electricity generation produces over 30% of U.S. carbon dioxide (CO2) emissions, but coal is also an available, secure, and low cost fuel that is currently utilized to meet roughly half of America’s electricity demand. While the world transitions from the existing fossil fuel-based energy infrastructure to a sustainable energy system, carbon dioxide capture and sequestration (CCS) will be a critical technology that will allow continued use of coal in an environmentally acceptable manner. Techno-economic analyses are useful in understanding the costs and benefits of CCS. However, typical techno-economic analyses of post-combustion CO2 capture systems assume continuous operation at a high CO2 removal, which could use 30% of pre-capture electricity output and require new capacity installation to replace the output lost to CO2 capture energy requirements. This study, however, considers the inherent flexibility in post-combustion CO2 capture systems by modeling power plants that vary CO2 capture energy requirements in order to increase electricity output when economical under electricity market conditions. A first-order model of electricity dispatch and a competitive electricity market is used to investigate flexible CO2 capture in response to hourly electricity demand variations. The Electric Reliability Council of Texas (ERCOT) electric grid is used as a case study to compare plant and grid performance, economics, and CO2 emissions in scenarios without CO2 capture to those with flexible or inflexible CO2 capture systems. Flexible CO2 capture systems can choose how much CO2 to capture based on the competition between CO2 and electricity prices and a desire to either minimize operating costs or maximize operating profits. Coal and natural gas prices have varying degrees of predictability and volatility, and the relative prices of these fuels have a major impact on power plant operating costs and the resulting plant dispatch sequence. Because the chosen operating point in a flexible CO2 capture system affects net power plant efficiency, fuel prices also influence which CO2 capture operating point may be the most economical and the resulting dispatch of power plants with CO2 capture. Several coal and natural gas price combinations are investigated to determine their impact on flexible CO2 capture operation and the resulting economic and environmental impacts at the power plant and electric grid levels. This study investigates the costs and benefits of flexible CO2 capture in a framework of a carbon-constrained future where the effects of major energy infrastructure changes on fuel prices are not entirely clear.


2021 ◽  
Vol 18 (2) ◽  
pp. 60-66
Author(s):  
A.D. Mekhtiyev ◽  

The article deals with the issue of using a thermoacoustic engine as a low-power cogeneration source of energy for autonomous consumer power supply capable of operating on various types of fuel and wastes subject to combustion. The analysis of the world achievements in this field of energy has been carried out. A number of advantages make it very promising for developing energy sources capable of complex production of electrical and thermal energy with a greater efficiency than that of present day thermal power plants. The proposed scheme of a thermal power plant is based on the principle of a Stirling engine, but it uses the most efficient and promising thermoacoustic converter of heat into mechanical vibrations, which are then converted into electric current. The article contains a mathematical apparatus that explains the basic principles of the developed thermoacoustic engine. To determine the main parameters of the thermoacoustic engine, the methods of computer modeling in the DeltaEC environment have been used. A layout diagram of the laboratory sample of a thermal power plant has been proposed and the description of its design has been given. It has been proposed to use dry saturated steam as the working fluid, which makes it possible to increase the generated power of the thermoacoustic engine.


Sign in / Sign up

Export Citation Format

Share Document