scholarly journals Suppression Method of Source Voltage Fluctuation Utilizing Reactive Power Compensation on AC Electric Railway

1992 ◽  
Vol 112 (1) ◽  
pp. 74-82
Author(s):  
Yoshifumi Mochinaga ◽  
Hirofumi Fujie ◽  
Takayuki Furukawa ◽  
Masatoshi Takeda ◽  
Eiji Kuba
2021 ◽  
Vol 13 (14) ◽  
pp. 7829
Author(s):  
Yifan Zhang ◽  
Fei Tang ◽  
Fanghua Qin ◽  
Yu Li ◽  
Xin Gao ◽  
...  

Commutation failure at the inverter side of an MIDC (multi-infeed HVDC) is usually caused by AC system faults. Suppose the converter bus voltage cannot recover to the normal operation level in time: in that case, the commutation failure will then develop into more severe subsequent commutation failures or even DC blocking, which will severely threaten the security and stability of the system. Dynamic reactive power compensation equipment (DRPCE) can offer voltage support during accident recovery, stabilize voltage fluctuation and inhibit any subsequent commutation failure risk. This paper proposes the optimal DRPCE configuration scheme for maximizing both inhibitory effect and economic performance. The simulation results on MATLAB-BPA prove the scheme’s correctness and rationality, which can effectively inhibit the risk of subsequent commutation failure and obtain economic benefits.


2014 ◽  
Vol 494-495 ◽  
pp. 1651-1655
Author(s):  
Yu Jie Pei ◽  
Qing Hao Wang ◽  
Jian Guo Xu ◽  
Zhi Gang Li ◽  
Bo Liu ◽  
...  

With the rapid economic development in Liaoning Province, very rapid growth in electricity load, especially steel and fused magnesium commercial power. After the implementation of TOU price, Liaoning power grid voltage fluctuation is increased by that some enterprises were concentrated in low hours of electricity. Some power users were affected by lacking the means of dynamic reactive power. To point the necessity of application of the SVC, the existing of 66kV and 220kV grid power quality status are analyzed and simulated. The SVC compensation capacity and filter parameters are systematically design, after the transformation of the system and the simulation proved that the grid can achieve the design requirements.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2596
Author(s):  
Jiazheng Lu ◽  
Siguo Zhu ◽  
Bo Li ◽  
Yanjun Tan ◽  
Xiudong Zhou ◽  
...  

As a result of the high efficiency of ice-melting and the small power supply capacity, DC ice-melting devices are widely used in relation to transmission lines in the power grid. However, it needs to consume reactive power when ice-melting, and voltage fluctuation of the substation may be caused when the demand for reactive power is large. It also generates a large number of 5th and 7th harmonics when ice-melting. In this paper, combined with the demand for ice-melting for transmission lines and the dynamic reactive power of substations, a low-harmonic DC ice-melting device capable of simultaneous reactive power compensation is studied. The function of ice-melting and reactive power compensation can be operated simultaneously and the rectifier’s main harmonics can be eliminated. The simulation and experimental research on the device was carried out in the 500 kV Chuanshan substation. The actual ice melting was carried out on the 500 kV Chuansu I line and took only 68 min to melt the ice. The 500 kV bus voltage had no negative deviation, and the positive deviation decreased from +3.09% to +1.57% within 24 h of testing. The results prove the feasibility of the proposed DC ice-melting device in this paper.


Author(s):  
Chau Minh Thuyen

The correct determination of the parameters of Hybrid Active Power Filter (HAPF) plays a decisive role in its performance. Therefore, this paper proposes a new design algorithm for HAPF based on the Social Spider Algorithm (SSA). This algorithm has the advantage that it is possible to determine the parameters of both the power circuit part and the control circuit part of HAPF. The achieved results are multi-purpose, such as: minimum total harmonic distortion of the supply current and source voltage, the maximum reactive power compensation into the system and satisfy many constraints such as: system stability, resonance conditions of the branches and the limits of the parameters. Compared to traditional design method using the Particle Swarm Optimization algorithm, the proposed algorithm shows the advantages of smaller total harmonic distortion of supply current and source voltage, and higher reactive power compensation into the grid while still meeting the constraints.


2018 ◽  
Vol 28 (104) ◽  
pp. 154-160
Author(s):  
I. Doroshenko, ◽  
◽  
T. Druchyna, ◽  
Yu. G. Sarahman ◽  

2015 ◽  
Vol 9 (1) ◽  
pp. 591-599
Author(s):  
Ma Wenchuan ◽  
Zhitong Li ◽  
Chen Daochang ◽  
Qi Jiaming ◽  
Zhou Qiang ◽  
...  

For resolving the problem that power filter cannot work normally because TCR (thyristor controlled reactor) generates extra third harmonic current under asymmetrical voltage, the paper proposes the estimation method of current capacity that TCR generates extra third harmonic current under asymmetrical voltage. Considering extra third harmonic current under asymmetrical voltage, Optimum method based on genetic algorithm is used to design the parameters of power filter. With reactive power compensation and harmonic suppression project of a steel mill as example, the proposed method is simulated by Matlab. Simulation results show optimized power filter can eliminate extra third harmonic current effects under asymmetrical voltage, meet the requirement of reactive power compensation, reduce harmonics current that load injects into system, and guarantee the power filter safe operation under asymmetrical voltage.


Sign in / Sign up

Export Citation Format

Share Document