scholarly journals DESIGN AND SYNTHESIS OF NOVEL PYRIMIDINE ANALOGS AS ANTI-TUBERCULAR AGENTS TARGETING THYMIDINE KINASE DOMAIN

Author(s):  
Jainey P. James
2020 ◽  
Author(s):  
Florian Wittlinger ◽  
david heppner ◽  
Ciric To ◽  
Marcel Guenther ◽  
Bo Hee Shin ◽  
...  

Inhibitors developed to target the epidermal growth factor receptor (EGFR) are an effective therapy for patients with non-small cell lung cancer harbouring drug-sensitive activating mutations in the EGFR kinase domain. Drug resistance due to treatment-acquired mutations within the receptor itself has motivated development of successive generations of inhibitors that bind in the ATP-site, and third-generation agent osimertinib is now a first-line treatment for this disease. More recently, allosteric inhibitors have been developed to overcome the C797S mutation that confers resistance to osimertinib. In this study, we present the rational structure-guided design and synthesis of a mutant-selective EGFR inhibitor that spans the ATPand allosteric sites. The lead compound consists of a pyridinyl imidazole scaffold that binds irreversibly in the orthosteric site fused with a benzylisoindolinedione occupying the allosteric site. The compound potently inhibits enzymatic activity in L858R/T790M/C797S mutant EGFR (4.9 nM), with relative sparing of wild-type EGFR (47 nM). Additionally, this compound achieves cetuximab-independent, mutant-selective cellular efficacy on the L858R and L858R/T790M variants


2020 ◽  
Author(s):  
Florian Wittlinger ◽  
david heppner ◽  
Ciric To ◽  
Marcel Guenther ◽  
Bo Hee Shin ◽  
...  

Inhibitors developed to target the epidermal growth factor receptor (EGFR) are an effective therapy for patients with non-small cell lung cancer harbouring drug-sensitive activating mutations in the EGFR kinase domain. Drug resistance due to treatment-acquired mutations within the receptor itself has motivated development of successive generations of inhibitors that bind in the ATP-site, and third-generation agent osimertinib is now a first-line treatment for this disease. More recently, allosteric inhibitors have been developed to overcome the C797S mutation that confers resistance to osimertinib. In this study, we present the rational structure-guided design and synthesis of a mutant-selective EGFR inhibitor that spans the ATPand allosteric sites. The lead compound consists of a pyridinyl imidazole scaffold that binds irreversibly in the orthosteric site fused with a benzylisoindolinedione occupying the allosteric site. The compound potently inhibits enzymatic activity in L858R/T790M/C797S mutant EGFR (4.9 nM), with relative sparing of wild-type EGFR (47 nM). Additionally, this compound achieves cetuximab-independent, mutant-selective cellular efficacy on the L858R and L858R/T790M variants


Author(s):  
Birgitte Munch-Petersen ◽  
Gerda Tyrsted ◽  
Lisbeth Cloos ◽  
Rainer A. Beck ◽  
Kurt Eger

2018 ◽  
Vol 28 (2) ◽  
pp. 145-151 ◽  
Author(s):  
Wataru Kawahata ◽  
Tokiko Asami ◽  
Takayuki Irie ◽  
Masaaki Sawa

2019 ◽  
Vol 20 (22) ◽  
pp. 5592 ◽  
Author(s):  
Halawa ◽  
Eskandrani ◽  
Elgammal ◽  
Hassan ◽  
Hassan ◽  
...  

Protein kinases orchestrate diverse cellular functions; however, their dysregulation is linked to metabolic dysfunctions, associated with many diseases, including cancer. Mitogen-Activated Protein (MAP) kinase is a notoriously oncogenic signaling pathway in human malignancies, where the extracellular signal-regulated kinases (ERK1/2) are focal serine/threonine kinases in the MAP kinase module with numerous cytosolic and nuclear mitogenic effector proteins. Subsequently, hampering the ERK kinase activity by small molecule inhibitors is a robust strategy to control the malignancies with aberrant MAP kinase signaling cascades. Consequently, new heterocyclic compounds, containing a sulfonamide moiety, were rationally designed, aided by the molecular docking of the starting reactant 1-(4-((4-methylpiperidin-1-yl)sulfonyl)phenyl)ethan-1-one (3) at the ATP binding pocket of the ERK kinase domain, which was relying on the molecular extension tactic. The identities of the synthesized compounds (4–33) were proven by their spectral data and elemental analysis. The target compounds exhibited pronounced anti-proliferative activities against the MCF-7, HepG-2, and HCT-116 cancerous cell lines with potencies reaching a 2.96 μM for the most active compound (22). Moreover, compounds 5, 9, 10b, 22, and 28 displayed a significant G2/M phase arrest and induction of the apoptosis, which was confirmed by the cell cycle analysis and the flow cytometry. Thus, the molecular extension of a small fragment bounded at the ERK kinase domain is a valid tactic for the rational synthesis of the ERK inhibitors to control various human malignancies.


Author(s):  
W. Allen Shannon ◽  
José A. Serrano ◽  
Hannah L. Wasserkrug ◽  
Anna A. Serrano ◽  
Arnold M. Seligman

During the design and synthesis of new chemotherapeutic agents for prostatic carcinoma based on phosphorylated agents which might be enzyme-activated to cytotoxicity, phosphorylcholine, [(CH3)3+NCH2CH2OPO3Ca]Cl-, has been indicated to be a very specific substrate for prostatic acid phosphatase (PAP). This phenomenon has led to the development of specific histochemical and ultracytochemical methods for PAP using modifications of the Gomori lead method for acid phosphatase. Comparative histochemical results in prostate and kidney of the rat have been published earlier with phosphorylcholine (PC) and β-glycerophosphate (βGP). We now report the ultracytochemical results.Minced tissues were fixed in 3% glutaraldehyde-0.1 M phosphate buffered (pH 7.4) for 1.5 hr and rinsed overnight in several changes of 0.05 M phosphate buffer (pH 7.0) containing 7.5% sucrose. Tissues were incubated 30 min to 2 hr in Gomori acid phosphatase medium (2) containing 0.1 M substrate, either PC or βGP.


Author(s):  
Mehmet Sarikaya ◽  
Ilhan A. Aksay

Biomimetics involves investigation of structure, function, and methods of synthesis of biological composite materials. The goal is to apply this information to the design and synthesis of materials for engineering applications.Properties of engineering materials are structure sensitive through the whole spectrum of dimensions from nanometer to macro scale. The goal in designing and processing of technological materials, therefore, is to control microstructural evolution at each of these dimensions so as to achieve predictable physical and chemical properties. Control at each successive level of dimension, however, is a major challenge as is the retention of integrity between successive levels. Engineering materials are rarely fabricated to achieve more than a few of the desired properties and the synthesis techniques usually involve high temperature or low pressure conditions that are energy inefficient and environmentally damaging.In contrast to human-made materials, organisms synthesize composites whose intricate structures are more controlled at each scale and hierarchical order.


Planta Medica ◽  
2008 ◽  
Vol 74 (09) ◽  
Author(s):  
B Kang ◽  
YJ Jung ◽  
R Jeon
Keyword(s):  

Planta Medica ◽  
2016 ◽  
Vol 82 (05) ◽  
Author(s):  
KY Orabi ◽  
MS Abaza ◽  
KA ElSayed ◽  
AY Elnagar ◽  
SI Faggal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document