scholarly journals Genetic variability of Papaya ringspot virus isolates in Norte de Santander - Colombia

2015 ◽  
Vol 33 (2) ◽  
pp. 184-193 ◽  
Author(s):  
Giovanni Chaves-Bedoya ◽  
Luz Yineth Ortiz-Rojas

The Papaya ringspot virus (PRSV), a member of the potyvirus that is transmitted by aphids within the Potyviridae family, is the main limiting factor for papaya (Carica papaya L.) and Cucurbits worldwide and causes losses of up to 100%. In this study, we conducted research on the genetic diversity of PRSV isolates collected from two locations in the department of Norte de Santander, Colombia. The analysis was performed by comparing the nucleotide sequences of the region that encode the coat protein (CP) of nine PRSV isolates from the Villa del Rosario location and 12 isolates from the Campo Hermoso location. The analysis included three sequences of the CP of PRSV isolates reported in the Colombian departments of Arauca and Valle del Cauca. The bioinformatic analysis suggested that the PRSV isolates from the locations in Norte de Santander were different from each other, grouping into different phylogenetic groups. Anexistence of recombination events in the coat protein was observed. This is the first study of PRSV genetic variability that has been conducted at the local level in Colombia.

2021 ◽  
Author(s):  
Thi-Thu-Yen Tran ◽  
Tzu-Tung Lin ◽  
Chung-Ping Chang ◽  
Chun-Hung Chen ◽  
Van-Hoa Nguyen ◽  
...  

Papaya ringspot virus (PRSV) causes severe damage to papaya (Carica papaya L.) and is the primary limiting factor for papaya production worldwide. A nitrous acid-induced mild strain PRSV HA 5-1, derived from Hawaii strain HA, has been applied to control PRSV by cross protection for decades. However, the problem of strain-specific protection hampers its application in Taiwan and other geographic regions outside Hawaii. Here, sequence comparison of the genomic sequence of HA 5-1 with that of HA revealed 69 nucleotide changes, resulting in 31 aa changes in which 16 aa are structurally different. The multiple mutations of HA 5-1 are considered resulting from nitrous-acid induction since 86% of nucleotide changes are transition mutations. The stable HA 5-1 was used as a backbone to generate recombinants carrying individual 3’ fragments of Vietnam severe strain TG5, including NIa, NIb, and CP3’ regions, individually or in combination. Our results indicated that the best heterologous fragment for the recombinant is the region of CP3’, with which symptom attenuation of the recombinant is like that of HA 5-1. This mild recombinant HA51/TG5-CP3’ retained high levels of protection against the homologous HA in papaya plants and significantly increased the protection against the heterologous TG-5. Similarly, HA 5-1 recombinants carrying individual CP3’ fragments from Thailand SMK, Taiwan YK, and Vietnam ST2 severe strains also significantly increase the protection against the corresponding heterologous strains in papaya plants. Thus, our recombinant approach for mild strain generation is a fast and effective way to minimize the problem of strain-specific protection.


2002 ◽  
Vol 27 (2) ◽  
pp. 174-180 ◽  
Author(s):  
ROBERTO C. A. LIMA ◽  
MANOEL T. SOUZA JR. ◽  
GILVAN PIO-RIBEIRO ◽  
J. ALBERSIO A. LIMA

Papaya ringspot virus (PRSV) is the causal agent of the main papaya (Carica papaya) disease in the world. Brazil is currently the world's main papaya grower, responsible for about 40% of the worldwide production. Resistance to PRSV on transgenic plants expressing the PRSV coat protein (cp) gene was shown to be dependent on the sequence homology between the cp transgene expressed in the plant genome and the cp gene from the incoming virus, in an isolate-specific fashion. Therefore, knowledge of the degree of homology among the cp genes from distinct PRSV isolates which are present in a given area is important to guide the development of transgenic papaya for the control of PRSV in that area. The objective of the present study was to assess the degree of homology among the PRSV cp genes of several Brazilian isolates of this virus. Papaya and PRSV are present in many different ecosystems within Brazil. Twelve PRSV isolates, collected in eight different states from four different geographic regions, were used in this study. The sequences of the cp gene from these isolates were compared among themselves and to the gene used to generate transgenic papaya for Brazil. An average degree of homology of 97.3% at the nucleotide sequence was found among the Brazilian isolates. When compared to 27 isolates from outside Brazil in a homology tree, the Brazilian isolates were clustered with Australian, Hawaiian, and Central and North American isolates, with an average degree of homology of 90.7% among them.


2005 ◽  
Vol 30 (4) ◽  
pp. 357-365 ◽  
Author(s):  
Manoel T. Souza Júnior ◽  
Osmar Nickel ◽  
Dennis Gonsalves

Translatable and nontranslatable versions of the coat protein (cp) gene of a Papaya ringspot virus (PRSV) isolate collected in the state of Bahia, Brazil, were engineered for expression in Sunrise and Sunset Solo varieties of papaya (Carica papaya). The biolistic system was used to transform secondary somatic embryo cultures derived from immature zygotic embryos. Fifty-four transgenic lines, 26 translatable and 28 nontranslatable gene versions, were regenerated, with a transformation efficiency of 2.7%. Inoculation of cloned R0 plants with PRSV BR, PRSV HA or PRSV TH, Brazilian, Hawaiian and Thai isolates, respectively, revealed lines with mono-, double-, and triple-resistance. After molecular analysis and a preliminary agronomic evaluation, 13 R1 and R2 populations were incorporated into the papaya-breeding program at Embrapa Cassava and Tropical Fruits, in Cruz das Almas, Bahia, Brazil.


Plant Disease ◽  
2005 ◽  
Vol 89 (8) ◽  
pp. 841-847 ◽  
Author(s):  
Paula Tennant ◽  
M. H. Ahmad ◽  
D. Gonsalves

Transgenic papayas (Carica papaya) containing translatable coat protein (CPT) or nontranslatable coat protein (CPNT) gene constructs were evaluated over two generations for field resistance to Papaya ringspot virus in a commercial papaya growing area in Jamaica. Reactions of R0 CPT transgenic lines included no symptoms and mild or severe leaf and fruit symptoms. All three reactions were observed in one line and among different lines. Trees of most CPNT lines exhibited severe symptoms of infection, and some also showed mild symptoms. R1 offspring showed reactions previously observed with parental R0 trees; however, reactions not previously observed or a lower incidence of the reaction were also obtained. The transgenic lines appear to possess virus disease resistance that can be manipulated in subsequent generations for the development of a product with acceptable commercial performance.


2021 ◽  
Vol 16 (1) ◽  
pp. 474-480
Author(s):  
Wanwisa Siriwan ◽  
Sittiruk Roytrakul ◽  
Srimek Chowpongpang ◽  
Aroonothai Sawwa

Plant Disease ◽  
2021 ◽  
Author(s):  
Juan F Cornejo-Franco ◽  
Edison Gonzalo Reyes-Proaño ◽  
Dimitre Mollov ◽  
Joseph Mowery ◽  
Diego Fernando Quito-Avila

A study was conducted to investigate epidemiological aspects of papaya virus E (PpVE), a cytorhabdovirus commonly found in papaya (Carica papaya L.) plantings of Ecuador. Besides papaya, PpVE was found in three Fabaceae weeds, including Rhynchosia minima, Centrosema plumieri and Macroptilium lathyroides; the latter being the species with the highest virus prevalence. Greenhouse experiments showed that in M. lathyroides, single infections of PpVE induce only mild leaf mosaic, whereas in mixed infections with cowpea severe mosaic virus, PpVE contributes to severe mosaic. In papaya, PpVE did not induce noticeable symptoms in single or mixed infections with papaya ringspot virus. Transmission experiments confirmed that whiteflies (Bemisia tabaci) transmit PpVE in a semi-persistent, non-propagative manner.


Plant Disease ◽  
2004 ◽  
Vol 88 (5) ◽  
pp. 516-522 ◽  
Author(s):  
Gustavo Fermin ◽  
Valentina Inglessis ◽  
Cesar Garboza ◽  
Sairo Rangel ◽  
Manuel Dagert ◽  
...  

Local varieties of papaya grown in the Andean foothills of Mérida, Venezuela, were transformed independently with the coat protein (CP) gene from two different geographical Papaya ringspot virus (PRSV) isolates, designated VE and LA, via Agrobacterium tumefaciens. The CP genes of both PRSV isolates show 92 and 96% nucleotide and amino acid sequence similarity, respectively. Four PRSV-resistant R0 plants were intercrossed or selfed, and the progenies were tested for resistance against the homologous isolates VE and LA, and the heterologous isolates HA (Hawaii) and TH (Thailand) in greenhouse conditions. Resistance was affected by sequence similarity between the transgenes and the challenge viruses: resistance values were higher for plants challenged with the homologous isolates (92 to 100% similarity) than with the Hawaiian (94% similarity) and, lastly, Thailand isolates (88 to 89% similarity). Our results show that PRSV CP gene effectively protects local varieties of papaya against homologous and heterologous isolates of PRSV.


1997 ◽  
Vol 46 (6) ◽  
pp. 837-841 ◽  
Author(s):  
P. M. MAGDALITA ◽  
D. M. PERSLEY ◽  
I. D. GODWIN ◽  
R. A. DREW ◽  
S. W. ADKINS

Plant Disease ◽  
2004 ◽  
Vol 88 (4) ◽  
pp. 352-358 ◽  
Author(s):  
Michael J. Davis ◽  
Zhentu Ying

Papaya (Carica papaya) was transformed via Agrobacterium-mediated transformation with four constructs containing either the unmodified or modified coat protein (CP) gene of Florida isolate H1K of Papaya ringspot virus (PRSV). The CP genes were in the sense orientation (S-CP), antisense orientation (AS-CP), sense orientation with a frame-shift mutation (FS-CP), or sense orientation mutated with three-in-frame stop codons (SC-CP). In all, 256 putative transgenic lines with the CP constructs were inoculated mechanically with PRSV H1K. None of the lines was immune to PRSV; however, highly resistant lines were found in each CP transgene group. For breeding purposes, 21 PRSV-resistant lines representing the four transgene constructs were selected and crossed with six papaya genotypes. The lines from the FS-CP and SC-CP transgene groups were highly fertile, but those from the S-CP and AS-CP transgene groups were practically infertile. Plants derived from 54 crosses and representing 17 transgenic lines were planted in the field. After 1 year in the field, 293 of the 1,258 the plants (23.3%) became naturally infected with PRSV; whereas, 29 of 30 of the nontransgenic control plants (96.7%) became infected. The incidence of PRSV infection varied in the R1 progeny depending on both the transgenic line and the nontransgenic parent.


Sign in / Sign up

Export Citation Format

Share Document