scholarly journals Impact of different standard lighting sources on red jadeite and color quality grading

2019 ◽  
Vol 23 (4) ◽  
pp. 371-378
Author(s):  
Xin Pan ◽  
Ying Guo ◽  
Ziyuan Liu ◽  
Zikai Zhang ◽  
Yuxiang Shi

The purpose of this paper is to investigate the standard light source for grading and displaying the color of red jadeite and to classify the color. With Raman spectrometer, ultraviolet-visible spectrophotometer and X-ray fluorescence spectrometer, the results show that, the Fe 3+ is the main chromogenic mineral of red jadeite, which negatively correlates with the tonal angle, while the color of red jadeite has a positive correlation with the hematite content. The color of 120 red jadeite samples was examined by collecting the reflective signaled from the sample surface using an integrating sphere with the portable X-Rite SP62 spectrophotometer based on CIE 1976 L*a*b* uniform color space. The color parameters of jadeite samples under D65, A and CWF standard light sources were analyzed. The light spectrum of D65 light source is continuous, relatively smoothed with high color temperature, which makes the sample color close to that under the natural light and can be used as the best evaluation light source. A light source contributes to improve the red tone of jadeite, which is the best light source for commercial display of red jadeite. CWF light source can be used as the auxiliary lighting for color evaluation. The color of red jadeite is divided into five levels from best to worst using K-Means cluster analysis and Fisher discriminant analysis under D65 light source: Fancy Vivid, Fancy Deep, Fancy Intense, Fancy dark and Fancy.

2020 ◽  
Vol 2020 (1) ◽  
pp. 5-9
Author(s):  
Ruili He ◽  
Kaida Xiao ◽  
Michael Pointer ◽  
Stephen Westland

In this paper, skin tone heterogeneity in five facial areas (forehead, right cheekbone, left cheekbone, nose tip and chin) was investigated under six light sources with correlated color temperature (CCT) of 2850 K, 3500 K, 5000 K, 5500 K, 6500 K and 9000 K. Firstly, a facial image capturing protocol was developed and applied to five female participants, and their facial skin tone was analyzed based on the captured images. Through color characterization of the camera, XYZ values in each facial area were converted by a matrix from the extracted RGB data and then transformed to CAM02-UCS color space. MCDM with CAM02-UCS color difference was used to quantify skin tone heterogeneity in each facial area. The results under different light sources indicated that larger heterogeneity exists under the light source with lower CCT, and when the CCT of the light source ranges from 5000 K to 9000 K, there was smaller skin tone heterogeneity in each facial area.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2545 ◽  
Author(s):  
Ignacio Acosta ◽  
Jesús León ◽  
Pedro Bustamante

The current scenario of colorimetry shows a wide variety of different metrics which do not converge in the assessment of the color rendering of light sources. The limitations of the Color Rendering Index have promoted the emergence of new metrics, such as the Color Quality Scale. As in the case of the previous metric, these new concepts are based on the analysis of the deviation of different color samples in a color space, contrasting the results with those obtained with a light source reference, which can vary depending on the color temperature. Within this context, the Daylight Spectrum Index is proposed. This new concept aims to determine the affinity with daylighting of electric light sources, comparing the resulting spectral power distributions of the lamps studied and that observed under natural light. The affinity of an electric light source with daylighting allows for lower energy consumption due to the better performance of human vision. The new metric proposed is evaluated following the results obtained from 80 surveys, demonstrating the usefulness of this new concept in the quantification of color rendering of LED lamps and the affinity of electric light sources with daylighting.


2015 ◽  
Vol 731 ◽  
pp. 124-128
Author(s):  
Min Huang ◽  
Zhen Zheng ◽  
Huan Jiang ◽  
Hao Xue Liu

In order to investigate the influence of the light source with different illuminance and color temperature on the observers’ visual performance, five kinds of light sources were selected, named LED1, LED2, LED3, LED4 and Fluorescent, which have different illuminance or color temperature. 3 series of visual experiments, such as the ‘find out’ experiment, compared experiment, dose experiment were designed.13 observers were organized to carry out the experiment in the given time in turn. The reading rate, accuracy , index of mental capacity (IMC) and visual comfortable level score were analyzed, the results indicated that the light source with the lower color temperature and medium illuminance has the best visual performance and comfortable visual feel.


2022 ◽  
Vol 2149 (1) ◽  
pp. 012016
Author(s):  
Z F Wu ◽  
L Li ◽  
C H Dai ◽  
Y F Wang ◽  
Q T Cheng ◽  
...  

Abstract Low light level (LLL) calibration becomes more and more important since the rapid growth of remote sensing. The spectral radiance at normal higher light levels can be calibrated with good accuracy, while LLL spectral radiance cannot. If an adjustable light source can be designed at nearly constant correlated color temperature (CCT) covering several orders of magnitude, low light level spectral radiance can be obtained with the help of a photodetector. Whether or not the spectral distribution of an integrating sphere based light source is nearly constant is investigated. By adjusting the diameter of the variable aperture between the integrating sphere and tungsten lamp, the spectral radiance can be varied over 6 orders of magnitude. However, the relative spectrum in the red region increases notably when the spectral radiance is decreased to 1/100000. If the spectral radiance is decreased further, the spectral difference can be more than 300% and CCT decreases more than 250 K. By using baffles and another integrating sphere, low light level radiation source at nearly constant spectral distribution is obtained. The variation of CCT is less than 50 K over 6 orders of magnitude.


Author(s):  
Pradeep Lall ◽  
Peter Sakalaukus ◽  
Lynn Davis

Today’s lighting technology is steadily becoming more energy efficient and less toxic to the environment since the passing of the Energy Independence and Security Act of 2007 (EISA) [1]. EISA has mandated a higher energy efficiency standard for lighting products and the phase out of the common incandescent lamp. This has led lighting manufacturers to pursue solid-state lighting (SSL) technologies for consumer lighting applications. However, two major roadblocks are hindering the transition process to SSL lamps: cost and quality. In order to cut cost, manufactures are moving towards cheaper packaging materials and a variety of package architecture construction techniques which may potentially erode the quality of the lamp and reduce its survivability in everyday applications. Typically, SSL lamps are given product lifetimes of over twenty years based off of the IES TM-21-11 lighting standard which does not include moisture effects or large operational temperatures [2]. A group of recently released off-the-shelf lamps have undergone a steady-state temperature humidity bias life test of 85°C/85%RH (85/85) to investigate the reliability in harsh environment applications. The lack of accelerated test methods for lamps to assess reliability prior to introduction into the marketplace does not exist in literature. There is a need for SSL physics based models for the assessment and prediction of a lamp’s lifetime which is being spearheaded by the DOE [3]. In order to be fully accepted in the marketplace, SSL lamps must be able to perform similarly to incandescent lamps in these environments, as well as live up to the lifetime claims of manufacturers. A lamp’s package architecture must be designed with performance factors in mind, as well as address some of the known and published package related failure mechanisms, such as carbonization of the encapsulant material, delamination, encapsulant yellowing, lens cracking, and phosphor thermal quenching [4]. Each failure mechanism produces the similar failure mode of lumen degradation predominately due to two contributing factors: high junction temperature and moisture ingress. The current state-of-the-art has focused on individual areas of the lamp, such as the LED chip, substrate material, electrical driver design and thermal management techniques. [5] – [16] Looking at the lamp as a whole is a novel approach and has not been seen before in literature. This work followed the JEDEC standard JESD22-A101C of 85/85 with a one hour interval of applied voltage followed by a one hour interval of no applied voltage [17]. This test was performed continuously for each SSL lamp until it became nonoperational, i.e. did not turn on. Periodically, photometric measurements were taken following the IES LM-79-08 standard at room temperature using an integrating sphere, a spectrometer, and lighting software. The overall health of the SSL lamps was assed using the relative luminous flux (RLF), correlated color temperature (CCT) and the color difference (Δu′v′) using the Euclidean distance of the CIE 1976 color space coordinates. Finally, a Weibull analysis was completed to compare the characteristic lifetime of the SSL lamp to the actual rated lifetime. An important result from this work shows that the rated lifetime does not come close to the actual lifetime when the SSL lamps are used in a harsh humid environment which is fairly common in outdoor applications across the U.S. Also, the photometric results are presented for the entire lifetime of each SSL lamp under test.


2021 ◽  
Author(s):  
Lingyuan Qiao ◽  
Huanyue Zhang ◽  
Jingjie Yu ◽  
Fan Cao ◽  
Yingming Gao

Abstract Color-adjustable light sources facilitate both mood lighting and daylight harvesting. A single duty cycle can be used by a bi-color LED to adjust the correlated color temperature by associating it with the duty cycle of the pulse width modulation dimming signal of the cold and warm light sources. The one-to-one mapping relationship between the single duty cycle and the correlated color temperature is based on the color mixing theory of bi-color LEDs. A method to correlate the dimming signals for cold and warm LEDs is presented. The influence of the time characteristics of the two basic signals on dimming and color temperature adjustment is analyzed. The dimming system of bi-color LEDs is designed, and the method used to adjust the correlated color temperature with a single duty cycle is verified. The experiment showed that the correlated color temperature can be accurately adjusted by the proposed method.


2009 ◽  
Vol 56 (4) ◽  
pp. 207-212 ◽  
Author(s):  
Gorjana Popovic ◽  
Roze Djokic

Light from the polymerization source which initiates photopolymerization in the material has its determined wavelength. Photoinitiator, such as camphorhinone, excited by light, can be activated with any of the wavelength from its absorption spectrum. To obtain successful photopolymerization, light source should emit waves of adequate wavelength; light intensity has to be optimal, to have sufficient time of exposure and material up to 2 mm thickness. Photoinitiator inside the material should match light source spectrum and work regime. Halogen lamps have wide spectra of wavelengths in the visible part of the light spectrum. Their spectra are similar to absorption spectrum of camphorhinone. Plasma (xenon) lamps emit blue light. Though their diapason is low, spectra have great intensity. Adequate diapason and easy excitation allow them to have short time of exposure. LED lamps have blue diodes as light source. They do not need filters due to narrow emission spectrum. Laser (argon) lamps are the only that emit linear spectra. Ultraviolet (mercury) lamps are not in use any more in dentistry; theirs initiators were activated by UV light. LED lamps have longer life time; do not change the spectra during time, warm less, do not need filters, allow change of the source for more powerful, more efficient and more advantageous two steps or impulse illumination mode. However, LED lamps can not be used for a material that has photoinitiator(s) activated by light with wavelength above the maximum of the LED spectra.


2006 ◽  
Vol 23 (3-4) ◽  
pp. 669-674 ◽  
Author(s):  
PAULO D. PINTO ◽  
JOÃO M.M. LINHARES ◽  
JOÃO A. CARVALHAL ◽  
SÉRGIO M.C. NASCIMENTO

A variety of light sources are used in museum environments where the main concern is to prevent damaging effects of the light on paintings. Yet, the visual impression of an artistic painting is strongly influenced by the intensity and spectral profile of the illumination. The aim of this work was to determine psychophysically the spectral profile of the illumination preferred by observers when seeing paintings dated from the Renaissance époque and to investigate how their preferences correlate with the color temperature of the illumination and with the chromatic diversity of the paintings. Hyperspectral images of five oil paintings on wood were collected at the museum and the appearance of the paintings under five representative illuminants computed. Chromatic diversity was estimated by computing the representation of the paintings in the CIELAB color space and by counting the number of nonempty unit cubes occupied by the corresponding color volume. A paired-comparison experiment using precise cathode ray tube (CRT) reproductions of the paintings rendered with several illuminant pairs with different color temperatures was carried out to determine observers' preference. The illuminant with higher color temperature was always preferred except for one pair where no clear preference was expressed. The preferred illuminant produced the larger chromatic diversity, and for the condition where no specific illuminant was preferred the number of colors produced by the illuminant pair was very similar, a result suggesting that preference could have been influenced by chromatic diversity.


2020 ◽  
pp. 90-98
Author(s):  
Nina Carli ◽  
Armin Sperling ◽  
Grega Bizjak

A spectrally tuneable colour light source (TCLS) has been designed and constructed at Physikalisch-Technische Bundesanstalt (PTB), Germany. It consists of an integrating sphere with 24 LEDs which are driven by a computer-controlled power supply. It is intended for producing any visible spectral distribution and to mimic various light sources for use in laboratories as a calibration source. With the help of an integrated spectrometer, a closed loop operation was introduced to improve the performance of the TCLS and to spectrally stabilize its output spectrum. Before practical realization of the TCLS a series of simulations have been made to predict its performance and capability with a number of different target spectrums. During the practical implementation we have encountered difficulties, namely optimization of the output spectrum, dependency of LED spectra on the electric current through the LED and temperature of the LED, non-linearity of LED’s luminous flux with respect to electric current through the LED and some difficulties with small synthesis coefficient values, which were all successfully solved.


Sign in / Sign up

Export Citation Format

Share Document