Effects of Correlated Color Temperature of LED Light Sources and a Flourescent Light Source on Visual Performance


2015 ◽  
Vol 731 ◽  
pp. 92-96
Author(s):  
Yu Liu ◽  
Hong Tao Miao ◽  
Min Huang ◽  
Ai Ping Liu ◽  
Xian Yao Wu

In order to study the LED light source illumination and the correlated color temperature effect on the human eye visual performance and physiological changes, through the comparative experiments of visual task performances under the different color temperature (3000K low color temperature, 4000K intermediate color temperature) and the different illumination (1145lux high intensity, 500lux middle intensity, 288lux low illumination), study the relationship between the biological effect and visual performance from two aspects of the visual perception performance and the physical efficiency such as blood pressure and pulse. Research indicates that color temperature 3000K or 4000K, intensity of illumination in about 500lux LED light source is suitable to visual task.



2015 ◽  
Vol 731 ◽  
pp. 124-128
Author(s):  
Min Huang ◽  
Zhen Zheng ◽  
Huan Jiang ◽  
Hao Xue Liu

In order to investigate the influence of the light source with different illuminance and color temperature on the observers’ visual performance, five kinds of light sources were selected, named LED1, LED2, LED3, LED4 and Fluorescent, which have different illuminance or color temperature. 3 series of visual experiments, such as the ‘find out’ experiment, compared experiment, dose experiment were designed.13 observers were organized to carry out the experiment in the given time in turn. The reading rate, accuracy , index of mental capacity (IMC) and visual comfortable level score were analyzed, the results indicated that the light source with the lower color temperature and medium illuminance has the best visual performance and comfortable visual feel.



2021 ◽  
Vol 11 (9) ◽  
pp. 4035
Author(s):  
Jinsheon Kim ◽  
Jeungmo Kang ◽  
Woojin Jang

In the case of light-emitting diode (LED) seaport luminaires, they should be designed in consideration of glare, average illuminance, and overall uniformity. Although it is possible to implement light distribution through auxiliary devices such as reflectors, it means increasing the weight and size of the luminaire, which reduces the feasibility. Considering the special environment of seaport luminaires, which are installed at a height of 30 m or more, it is necessary to reduce the weight of the device, facilitate replacement, and secure a light source with a long life. In this paper, an optimized lens design was investigated to provide uniform light distribution to meet the requirement in the seaport lighting application. Four types of lens were designed and fabricated to verify the uniform light distribution requirement for the seaport lighting application. Using numerical analysis, we optimized the lens that provides the required minimum overall uniformity for the seaport lighting application. A theoretical analysis for the heatsink structure and shape were conducted to reduce the heat from the high-power LED light sources up to 250 W. As a result of these analyses on the heat dissipation characteristics of the high-power LED light source used in the LED seaport luminaire, the heatsink with hexagonal-shape fins shows the best heat dissipation effect. Finally, a prototype LED seaport luminaire with an optimized lens and heat sink was fabricated and tested in a real seaport environment. The light distribution characteristics of this prototype LED seaport luminaire were compared with a commercial high-pressure sodium luminaire and metal halide luminaire.



Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1089 ◽  
Author(s):  
Sara Raggiunto ◽  
Alberto Belli ◽  
Lorenzo Palma ◽  
Piergiovanni Ceregioli ◽  
Massimo Gattari ◽  
...  

Digital LED drivers capable of blending the spectrum of two LED fixtures with different Correlated Color Temperatures through the LEDs’ power supply control are widespread. However, the digital control of lighting systems is possible only after a careful study of the LED’s response, in terms of illuminance and Correlated Color Temperature. The proposed work takes advantage of the Tunable White technology for the realization of an efficient method for LED light source characterization. In order to evaluate how the light changes as a function of the electric power supplied by the LED drivers, an experimental setup to characterize LED light sources has been designed. Starting from the data acquired from the experimental setup, a model for dimming the LED driver and obtaining the desired values of quality of light has been developed. The proposed model is based on the least squares method and its accuracy is evaluated by comparing the obtained values of illuminance and Correlated Color Temperature with those measured by an illuminance spectrophotometer. Results achieved an error of 0.3% for Correlated Color Temperature and 1.5% for illuminance using the proposed approximation functions.



2017 ◽  
Vol 19 (2) ◽  
pp. 376-379 ◽  
Author(s):  
M. Rauch ◽  
S. Schmidt ◽  
I. W. C. E. Arends ◽  
K. Oppelt ◽  
S. Kara ◽  
...  

The photocatalytic oxidation of NADH using a flavin photocatalyst and a simple blue LED light source is reported.



2009 ◽  
Vol 29 (10) ◽  
pp. 2791-2794 ◽  
Author(s):  
林岳 Lin Yue ◽  
叶烈武 Ye Liewu ◽  
刘文杰 Liu Wenjie ◽  
吕毅军 Lü Yijun


2019 ◽  
Vol 23 (4) ◽  
pp. 371-378
Author(s):  
Xin Pan ◽  
Ying Guo ◽  
Ziyuan Liu ◽  
Zikai Zhang ◽  
Yuxiang Shi

The purpose of this paper is to investigate the standard light source for grading and displaying the color of red jadeite and to classify the color. With Raman spectrometer, ultraviolet-visible spectrophotometer and X-ray fluorescence spectrometer, the results show that, the Fe 3+ is the main chromogenic mineral of red jadeite, which negatively correlates with the tonal angle, while the color of red jadeite has a positive correlation with the hematite content. The color of 120 red jadeite samples was examined by collecting the reflective signaled from the sample surface using an integrating sphere with the portable X-Rite SP62 spectrophotometer based on CIE 1976 L*a*b* uniform color space. The color parameters of jadeite samples under D65, A and CWF standard light sources were analyzed. The light spectrum of D65 light source is continuous, relatively smoothed with high color temperature, which makes the sample color close to that under the natural light and can be used as the best evaluation light source. A light source contributes to improve the red tone of jadeite, which is the best light source for commercial display of red jadeite. CWF light source can be used as the auxiliary lighting for color evaluation. The color of red jadeite is divided into five levels from best to worst using K-Means cluster analysis and Fisher discriminant analysis under D65 light source: Fancy Vivid, Fancy Deep, Fancy Intense, Fancy dark and Fancy.



2021 ◽  
Vol 2145 (1) ◽  
pp. 012056
Author(s):  
Pawaphat Jaturaphagorn ◽  
Papichaya Chaisakul ◽  
Nattaporn Chattham ◽  
Pichet Limsuwan

Abstract Research on mid-IR silicon-based waveguides has recently received strong interest. Particularly, this paper focuses on one of the critical issues in micron-scale photonic integrated circuits, which is to efficiently couple a mid-IR LED (light emitting diode) light source to an external micron-scale waveguide. The optical coupling scheme is crucial for the exploitation of LED light sources in waveguide-based spectroscopic sensing applications. This paper reports optical coupling scheme between an LED mid-IR light source and a silicon rich silicon nitride (SiN) waveguide that could enable the use of LED-based light sources. Finally, the detection limit of the investigated device for carbon dioxide gas detection is calculated.



2021 ◽  
Author(s):  
Lingyuan Qiao ◽  
Huanyue Zhang ◽  
Jingjie Yu ◽  
Fan Cao ◽  
Yingming Gao

Abstract Color-adjustable light sources facilitate both mood lighting and daylight harvesting. A single duty cycle can be used by a bi-color LED to adjust the correlated color temperature by associating it with the duty cycle of the pulse width modulation dimming signal of the cold and warm light sources. The one-to-one mapping relationship between the single duty cycle and the correlated color temperature is based on the color mixing theory of bi-color LEDs. A method to correlate the dimming signals for cold and warm LEDs is presented. The influence of the time characteristics of the two basic signals on dimming and color temperature adjustment is analyzed. The dimming system of bi-color LEDs is designed, and the method used to adjust the correlated color temperature with a single duty cycle is verified. The experiment showed that the correlated color temperature can be accurately adjusted by the proposed method.





Sign in / Sign up

Export Citation Format

Share Document