scholarly journals Size optimization of shoulder filleted shafts with relief grooves for improving their fatigue life

2017 ◽  
Vol 37 (3) ◽  
pp. 85-91
Author(s):  
Juan Manuel González-Mendoza ◽  
Samuel Alcántara-Montes ◽  
José De Jesús Silva-Lomelí ◽  
Carlos De la Cruz-Alejo ◽  
Arturo Ocampo-Ramírez

Although in scientific literature there are studies regarding the inclusion of relief grooves in order to diminish the amount of stress concentration in stepped shafts, the incorporation of optimization algorithms capable of parametrically determining their geometry remains unexplored. In this paper, an approach to the problem of size optimization of shoulder filleted shafts with relief grooves and subject to axial loads is presented. The objective of the optimization is to minimize the maximum value of stress at both, the root of the shoulder fillet, and the root of the groove, thus minimizing stress concentration and improving fatigue life of such elements. Under this methodology, different percentages of reduction of stress are achieved for the shafts with relief grooves, in comparison with the shafts without relief grooves. The novelty of this approach lies in the incorporation of an algorithm for the determination of the optimum geometry of the grooves.

Author(s):  
Kris Hectors ◽  
Hasan Saeed ◽  
Wim De Waele

Abstract A new fatigue lifetime assessment approach for offshore jacket structures is presented. It combines a previously developed numerical framework for automated determination of stress concentration factors in tubular joints and a multidimensional finite element modelling approach. The approach is explained based on a case study of an OC4 type offshore jacket. To determine the fatigue life, a directional wave spectrum is combined with the JONSWAP spectrum. The fatigue life of the jacket is assessed for two different sea states. Based on the fatigue analysis the most fatigue critical wave direction is identified. The hot spot stresses in one of the most critical joints are determined and compared to stresses obtained with the Efthymiou equations. The shortcomings of these equations are highlighted and it is shown how the numerical framework can be used to improve the current fatigue design philosophy for offshore jackets which relies on the Efthymiou equations for stress concentration factors in the welded tubular joints.


2013 ◽  
Vol 652-654 ◽  
pp. 1505-1508
Author(s):  
Xiao Xue Duan ◽  
Yan Hua Zhang

Stress and fatigue analysis of welded case shell on aeroengine under combined internal pressure and axial loads using elastic-plastic finite element has been performed. The results show that the largest stress concentration appears on the mutational cross section of the fixture seat and fixture fringe structure some distance from the weld toe. The positions with the weakest fatigue life locate at the fixture fringe close to the weld toe of girth joint, and also appear at the ring closed weld of the case shell middle.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 232
Author(s):  
Pedro J. Sánchez-Soto ◽  
Eduardo Garzón ◽  
Luis Pérez-Villarejo ◽  
George N. Angelopoulos ◽  
Dolores Eliche-Quesada

In this work, an examination of mining wastes of an albite deposit in south Spain was carried out using X-ray Fluorescence (XRF), X-ray diffraction (XRD), particle size analysis, thermo-dilatometry and Differential Thermal Analysis (DTA) and Thermogravimetric (TG) analysis, followed by the determination of the main ceramic properties. The albite content in two selected samples was high (65–40 wt. %), accompanied by quartz (25–40 wt. %) and other minor minerals identified by XRD, mainly kaolinite, in agreement with the high content of silica and alumina determined by XRF. The content of Na2O was in the range 5.44–3.09 wt. %, being associated with albite. The iron content was very low (<0.75 wt. %). The kaolinite content in the waste was estimated from ~8 to 32 wt. %. The particle size analysis indicated values of 11–31 wt. % of particles <63 µm. The ceramic properties of fired samples (1000–1350 °C) showed progressive shrinkage by the thermal effect, with water absorption and open porosity almost at zero at 1200–1250 °C. At 1200 °C, the bulk density reached a maximum value of 2.38 g/cm3. An abrupt change in the phase evolution by XRD was found from 1150 to 1200 °C, with the disappearance of albite by melting in accordance with the predictions of the phase diagram SiO2-Al2O3-Na2O and the system albite-quartz. These fired materials contained as main crystalline phases quartz and mullite. Quartz was present in the raw samples and mullite was formed by decomposition of kaolinite. The observation of mullite forming needle-shape crystals was revealed by Scanning Electron Microscopy (SEM). The formation of fully densified and vitrified mullite materials by firing treatments was demonstrated.


2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110264
Author(s):  
Zhang Ying ◽  
Lian Zhanghua ◽  
Gao Anqi ◽  
Yang Kun

The thread connection’s root fillet radius of 0.038″ size is the greatest weakness of the API NC type joints and thread. During the slimehole drilling, especially in the deep and ultra-deep gas well, its stress concentration factor and notch sensitivity factor are very high A novel thread connection design (TM) of a drilling tool is proposed to decrease the fatigue failure of the slimehole drilling tool in the deep and the ultra-deep gas well in the Tarim oilfield China. The novelty in the TM thread structure is, reducing the threads per inch, extending the distance from the last engaged thread to the external shoulder of the pin and adding three threads to the conventional connection. The novel thread connection will improve the slimehole drilling tool’s anti-fatigue life due to its improved elasticity and rigidity. Furthermore, the TM can transfer the maximum stress at the connection root to the loaded surface, which can effectively lower the fatigue notch’s sensitivity coefficient. In this paper, the finite element method (FEM) is applied to carry out the detailed comparative analysis of the TM with existing thread connection NC38, TX60 and TH90. The TM has the lowest stress concentration factor and fatigue notch sensitivity coefficient, so its anti-fatigue life is the highest. In addition, TM is manufactured and is tested at Tarim oilfield in China.


1972 ◽  
Vol 7 (2) ◽  
pp. 132-140 ◽  
Author(s):  
P B Lindley

The determination of tearing energy, i.e. the energy available for crack growth, is an essential prerequisite for the estimation of the fatigue life of rubber components. Three methods of determining tearing energy are considered: from changes in total energy, from crack surface displacements, and by comparison with known values for the same crack growth rates. It is shown by applying experimental and numerical techniques to plane-stress testpieces, not necessarily of uniform stress or thickness, that the methods are satisfactory.


1968 ◽  
Vol 3 (2) ◽  
pp. 96-97
Author(s):  
R T Hartlen ◽  
L E Jones

Aluminium plates (7/1 width/thickness ratio) were bent to fracture. Circumferential strain at fracture location (maximum value 0.26) was obtained by special plotting and extrapolation of (millimetre) photo-grid data.


1972 ◽  
Vol 94 (3) ◽  
pp. 815-824 ◽  
Author(s):  
J. C. Gerdeen

An approximate theoretical analysis is presented for the determination of stress concentration factors in thick walled cylinders with sideholes and crossholes. The cylinders are subjected to both internal pressure and external shrink-fit pressure. Stress concentration factors are plotted as functions of the geometrical ratios of outside diameter-to-bore diameter, and bore diameter-to-sidehole diameter. Theoretical results are compared to experimental values available in the literature and results of experiments described in a separate paper.


Sign in / Sign up

Export Citation Format

Share Document