Metrology of the photo-grid determination of fracture strain for a plate in bending

1968 ◽  
Vol 3 (2) ◽  
pp. 96-97
Author(s):  
R T Hartlen ◽  
L E Jones

Aluminium plates (7/1 width/thickness ratio) were bent to fracture. Circumferential strain at fracture location (maximum value 0.26) was obtained by special plotting and extrapolation of (millimetre) photo-grid data.

Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 232
Author(s):  
Pedro J. Sánchez-Soto ◽  
Eduardo Garzón ◽  
Luis Pérez-Villarejo ◽  
George N. Angelopoulos ◽  
Dolores Eliche-Quesada

In this work, an examination of mining wastes of an albite deposit in south Spain was carried out using X-ray Fluorescence (XRF), X-ray diffraction (XRD), particle size analysis, thermo-dilatometry and Differential Thermal Analysis (DTA) and Thermogravimetric (TG) analysis, followed by the determination of the main ceramic properties. The albite content in two selected samples was high (65–40 wt. %), accompanied by quartz (25–40 wt. %) and other minor minerals identified by XRD, mainly kaolinite, in agreement with the high content of silica and alumina determined by XRF. The content of Na2O was in the range 5.44–3.09 wt. %, being associated with albite. The iron content was very low (<0.75 wt. %). The kaolinite content in the waste was estimated from ~8 to 32 wt. %. The particle size analysis indicated values of 11–31 wt. % of particles <63 µm. The ceramic properties of fired samples (1000–1350 °C) showed progressive shrinkage by the thermal effect, with water absorption and open porosity almost at zero at 1200–1250 °C. At 1200 °C, the bulk density reached a maximum value of 2.38 g/cm3. An abrupt change in the phase evolution by XRD was found from 1150 to 1200 °C, with the disappearance of albite by melting in accordance with the predictions of the phase diagram SiO2-Al2O3-Na2O and the system albite-quartz. These fired materials contained as main crystalline phases quartz and mullite. Quartz was present in the raw samples and mullite was formed by decomposition of kaolinite. The observation of mullite forming needle-shape crystals was revealed by Scanning Electron Microscopy (SEM). The formation of fully densified and vitrified mullite materials by firing treatments was demonstrated.


2021 ◽  
Vol 2 (3) ◽  
pp. 542-558
Author(s):  
Mohammadmehdi Shahzamanian ◽  
David Lloyd ◽  
Amir Partovi ◽  
Peidong Wu

The effect of the width to thickness ratio on the bendability of sheet metal is investigated using the finite element method (FEM) employing the Gurson–Tvergaard–Needleman (GTN) model. Strain path changes in the sheet with change in the width/thickness ratio. It is shown that bendability and fracture strain increase significantly by decrease in the width/thickness ratio. The stress state is almost uniaxial when the stress ratio (α) is close to zero for narrow sheets. Stress ratio is nothing but the major stress to minor stress ratio. This delays the growth and coalescence of micro-voids as the volumetric strain and stress triaxiality (pressure/effective stress) decrease. On the other hand, ductility decreases with increase in α for wider sheets. Fracture bending strain is calculated and, as expected, it increases with decrease in the width/thickness ratio. Furthermore, a brief study is performed to understand the effect of superimposed hydrostatic pressure on fracture strain for various sheet metals with different width/thickness ratios. It is found that the superimposed hydrostatic pressure increases the ductility, and that the effect of the width/thickness ratio in metals on ductility is as significant as the effect of superimposed hydrostatic pressure. Numerical results are found to be in good agreement with experimental observations.


2011 ◽  
Vol 94-96 ◽  
pp. 1146-1151 ◽  
Author(s):  
Guan Rong ◽  
Xiao Jiang Wang

Permeability test for complete stress-strain process of coarse sandstone were carried out in triaxial test instrument. On the basis of test results, the influence of confining pressure and strain on the hydraulic conductivity was discussed. It is shown that in the complete stress-strain process, hydraulic conductivity changes in the law that presents the same character with the curve of stress-strain. The hydraulic conductivity reduces slightly with the increase of deviatoric stress in the stage of micro fracture compressing and elastic; In the elastoplastic stage, along with the expansion of new fractures, the hydraulic conductivity increases slowly at first and then reaches sharply to the maximum value after peak point; In the post-peak stage, the fracture which controls the hydraulic conductivity of coarse sandstone is compressed because of the confining pressure and the hydraulic conductivity decreases. During the process of deformation and failure, the hydraulic conductivity is more sensitive to the change of circumferential strain. With the increase of confining pressure, the increased value from initial to peak value and the decreased value from peak to residual value decreases.


2021 ◽  
Vol 348 ◽  
pp. 01014
Author(s):  
Karim Saber ◽  
Alyen Abahazem ◽  
Nofel Merbahi ◽  
Mohamed Yousfi

In this work, an electrical model equivalent to the corona discharge reactor has been proposed in a multitips plan configuration, in dry air at atmospheric pressure. The electrical parameters evolution of the circuit are obtained by using the identification method which is based on the least squares recursive (RLS) algorithm, the estimated parameters allow us to describe the corona discharge behavior inside the reactor. The RLS method used during the determination of capacitance and resistance is validated by the comparison between the measured and the calculated currents, the significant forms of capacitance and resistance confirm the validity of the proposed electrical model. The estimated parameters of the electrical circuit allowed us to determine the discharge power, the power delivered to the reactor and thus the energy efficiency during the discharge, this efficiency increases during the propagation of streamers towards the plane, it reaches a maximum value which is equal to 50% in the case of the fourtips- plane configuration. The energy stored in the reactor is also calculated using the electrical circuit, it increases to a maximum value of 2.6 pJ, which is a very low value compared to the energy delivered to the reactor. This work allows us to control the discharge and lost energy during the corona discharge in the case of multi-tips-plane configuration.


2011 ◽  
Vol 28 (2) ◽  
pp. 151 ◽  
Author(s):  
R. A Ghani ◽  
T. L Goh ◽  
A. M Hariri ◽  
Y. N Baizura

The basic friction angle, Φb for artificially sawn discontinuity planes for fresh granite, as determined by tilt testing, has an average value of 30º. For the natural rough discontinuity surfaces, a wide range of values have been determined for the peak friction angle, Φpeak ranging from 47º to a maximum value of 80º, depending on the joint roughness coefficient (JRC). The average values of the friction angles for the different degrees of roughness were as follows: JRC 2–4 = 58°; JRC 6–8 = 60°; JRC 8–10 = 47°; JRC 12–14 = 60°; JRC 14–16 = 71° ; JRC 18–20 = 80°.


2015 ◽  
Vol 21 (4) ◽  
pp. 593-604 ◽  
Author(s):  
Grzegorz Łagód ◽  
Mariola Chomczyńska ◽  
Agnieszka Montusiewicz ◽  
Jacek Malicki ◽  
David Stransky

Abstract The article presents the possible methods for determining biological or statistically significant differences between taxocenoses compared with respect to biodiversity. To obtain a complete description of biological differences between the compared hypothetical communities, the following indices were calculated: S (taxon richness), H (the Shannon index), Hmax (the maximum value of the Shannon index for the richness of taxa represented by the same number of individuals), Vd (a percentage value of covering the structural capacity of community, “evenness deficiency”), E (the MacArthur index - a taxon number (S) in a community for which the observed value of H equals Hmax), and Ps (a taxon richness shortage in percents). Moreover, a graphic profile method (Дд, Tj, and Lj profiles) was used for comparing the diversity of the communities. To obtain information about statistically significant differences in biodiversity between the analysed communities, rarefaction curves were applied. The curves are based on the null models and the Monte Carlo method. The rarefaction method resulted in determination of the statistical significance of the differences between taxon richness and Shannon's index values for the compared communities. The Vd and Ps indices and the profile method allowed concluding about the significance of the biological differences between taxocenoses, even when their values of Shannon's H indices were numerically similar.


2021 ◽  
Vol 15 (1) ◽  
pp. 85-94
Author(s):  
Thanh Bao Doan ◽  
◽  
Quoc Vu Pham ◽  
Trung Duy Pham ◽  
◽  
...  

A transient overvoltage incident at the transformer terminal generates high-frequency voltage fluctuations that have negative impacts on the transformer. These oscillations may cause damage to the insulation of transformers. These problems are heavy, difficult to restore, and repair. Therefore, overvoltage protection for the transformers is essential. This paper pointed out that the interleaved disk winding has a larger capacitance than that of continuous disk windings. Therefore, the use of interleaved disk winding has the effect of making the voltage distribution on the winding wheels more even and increasing the overvoltage resistance of the transformer. In addition, the value of the voltage at each position of the winding when lightning impulses on the transformer terminal and the voltage distribution on the interleaved disk winding at the time when the lightning impulse has maximum value are also presented in the article. On that basis, the effectiveness of using the interleaved disk winding method in the transformer will be analyzed in detail.


2017 ◽  
Vol 37 (3) ◽  
pp. 85-91
Author(s):  
Juan Manuel González-Mendoza ◽  
Samuel Alcántara-Montes ◽  
José De Jesús Silva-Lomelí ◽  
Carlos De la Cruz-Alejo ◽  
Arturo Ocampo-Ramírez

Although in scientific literature there are studies regarding the inclusion of relief grooves in order to diminish the amount of stress concentration in stepped shafts, the incorporation of optimization algorithms capable of parametrically determining their geometry remains unexplored. In this paper, an approach to the problem of size optimization of shoulder filleted shafts with relief grooves and subject to axial loads is presented. The objective of the optimization is to minimize the maximum value of stress at both, the root of the shoulder fillet, and the root of the groove, thus minimizing stress concentration and improving fatigue life of such elements. Under this methodology, different percentages of reduction of stress are achieved for the shafts with relief grooves, in comparison with the shafts without relief grooves. The novelty of this approach lies in the incorporation of an algorithm for the determination of the optimum geometry of the grooves.


Sign in / Sign up

Export Citation Format

Share Document