Gem-quality spessartine-grossular garnet of intermediate composition from Madagascar

2003 ◽  
Vol 28 (4) ◽  
pp. 235-239
Author(s):  
Karl Schmetzer ◽  
Heinz-Jürgen Bernhardt
Author(s):  
R. A. Batchelor ◽  
J. A. Weir

ABSTRACTThe Moffat Shale Group is a condensed, variable and partly pelagic sequence of mudrocks of Llandeilo—Llandovery age. The sequence has a five-fold lithological subdivision based mainly on the occurrence of grey mudstones within a succession otherwise dominated by fully euxinic black graptolitic mudrocks. Associated with the black mudrocks, especially in the Llandovery, are metabentonite beds which achieve a climax, both in thickness and in number, within the top quarter of the mudrock sequence. A geochemical and mineralogical study has confirmed a volcanic origin for the metabentonites. Major element data highlight a carbonate-dominated environment above the gregarius—convolutus Zones boundary. Phosphorus levels reach a peak at the same boundary, as well as at the Caradoc—Ashgill boundary where phosphorite horizons are known from Wales and Norway. Immobile trace elements have highlighted regular changes in source magma composition. Prolonged periods of crystal fractionation in magmas of intermediate composition gave rise, on eruption, to large volumes of silicic ash which had a deleterious effect on graptolite species and led to local extinctions. Regular fluctuations in ash composition from silicic to intermediate are ascribed to alternating fractionation and magma mixing cycles.


2019 ◽  
Vol 10 (2) ◽  
pp. 289-308 ◽  
Author(s):  
T. A. Osipova ◽  
G. A. Kallistov ◽  
M. V. Zaitseva

The article is focused on the morphology, trace element composition, U‐Pb and Lu‐Hf systems in zircon in high‐Mg diorite of the Chelyabinsk granitoid massif. Our analytical studies of the U‐Pb and Lu‐Hf isotope systems and the trace element composition were performed using mass spectrometry (MS) with inductively coupled plasma (ICP) and laser ablation (LA) of samples. It is established that the zircon formed at the last stages of crystallization of the basic melt under subsolidus conditions at low (600–700 °C) temperatures, which distinguishes it from the zircon of most other high‐Mg rocks of the intermediate composition. The internal structure of the zircon and the concentration of trace elements are locally altered under the influence of a fluid, which led to a partial disruption of the U‐Pb and Lu‐Hf isotopic systems. For the least altered areas in the zircon crystals, the age of crystallization of the parent high‐Mg melt is 362±2 Ma, which coincides with the age estimated from the geological data. Considering the isotope composition of Hf in the zircon and the trace element concentrations, there are grounds to relate the formation of high‐Mg diorite in the Chelyabinsk granitoid massif with a mixed mantle‐crustal source.


1989 ◽  
Vol 53 (373) ◽  
pp. 571-581 ◽  
Author(s):  
Joy R. Baldwin

AbstractManganotantalite replacement by (1) microlite and (2) ferrotantalite, and changes in composition of uranoan microlite from rare-metal pegmatites in South Africa and Namibia have been investigated with the electron microprobe. A uranmicrolite from Karibib, Namibia contained 14.35% UO2, 1.03% PbO, 56.12% Ta2O5, 13.18% Nb2O5, 0.58% Fe2O3, 6.87% CaO, 0.54% SrO, 0.59% MnO, 0.86% Na2O and 0.47% F. Analyses along traverses across a 1.3 mm uranoan microlite, Tantalite Valley, Namibia, revealed two essentially distinct compositions: a more hydrated rim area of 200 µm radius containing 7% higher Ta2O5, 10% lower CaO and 1.3% lower F than a main central area of slightly variable composition. Back-scattered electron images reveal zoning and distinctive subspheroidal structures. New data and structural features are given for radioactive uranoan microlite from Namaqualand, South Africa. These crystals contain remnants of a bismuth phase and are in various stages of replacement. In the microlites replacing manganotantalite, the microlite reflects the composition of the replaced mineral. At Rubicon Mine, Karibib, a narrow marginal zone of mangantantalite is replaced by ferrotantalite along cleavages; a zone of intermediate composition is apparent. Detailed traverses have been completed across all of these crystals.


1976 ◽  
Vol 13 (2) ◽  
pp. 348-354 ◽  
Author(s):  
J. P. N. Badham ◽  
R. D. Morton

The Camsell River area comprises a roof pendant of volcanic rocks within an Aphebian (~1800 m.y.) orogenic belt. Magnetite–apatite intrusions and related bodies are common and are closely associated with plutons of intermediate composition. The magnetitic intrusions are interpreted as immiscible liquids that separated from a magma of intermediate composition. The immiscible fractions were predominantly crystalline when they reached their present higher levels, and final emplacement was facilitated by volatile-streaming and fluidization. Their presence in the orogenic belt is taken as further support for the hypothesis that the orogen was of Andean type.


1989 ◽  
Vol 67 (6) ◽  
pp. 1633-1644 ◽  
Author(s):  
René J. Belland

Possible phytogeographic boundaries within the Gulf of St. Lawrence region are examined using the moss floras of 29 smaller geographic units. Principal coordinates analysis (PCoA) shows floristic change in the Gulf to be gradual and to follow two major gradients, a north–south gradient and an east–west gradient. These are positively correlated to the distributions of temperate and arctic species, respectively. PCoA ordinations also show no evidence of distinct boundaries between adjacent units, but indicate that Cape Breton Island and Gaspé Peninsula have floras of intermediate composition to those of the Maritimes and Newfoundland. Randomly generating floras for adjacent units using Monte Carlo simulation supports the results obtained from PCoA. The real Jaccard similarities between adjacent units are found to be greater than those expected from simulation. The lack of distinct boundaries in the Gulf of St. Lawrence region is attributed to the high diversity of species distributions possible in a region with complex environmental gradients.


2019 ◽  
Vol 485 (3) ◽  
pp. 4311-4329 ◽  
Author(s):  
Christian I Johnson ◽  
Nelson Caldwell ◽  
R Michael Rich ◽  
Mario Mateo ◽  
John I Bailey

ABSTRACT NGC 6402 is among the most massive globular clusters in the Galaxy, but little is known about its detailed chemical composition. Therefore, we obtained radial velocities and/or chemical abundances of 11 elements for 41 red giant branch stars using high resolution spectra obtained with the Magellan-M2FS instrument. We find NGC 6402 to be only moderately metal-poor with 〈[Fe/H]〉 = −1.13 dex (σ = 0.05 dex) and to have a mean heliocentric radial velocity of −61.1 km s−1 (σ = 8.5 km s−1). In general, NGC 6402 exhibits mean composition properties that are similar to other inner Galaxy clusters, such as [α/Fe] ∼+0.3 dex, [Cr,Ni/Fe] ∼ 0.0 dex, and 〈[La/Eu]〉 = −0.08 dex. Similarly, we find large star-to-star abundance variations for O, Na, Mg, Al, and Si that are indicative of gas that experienced high temperature proton-capture burning. Interestingly, we not only detect three distinct populations but also find large gaps in the [O/Fe], [Na/Fe], and [Al/Fe] distributions that may provide the first direct evidence of delayed formation for intermediate composition stars. A qualitative enrichment model is discussed where clusters form stars through an early ($\lesssim$5–10 Myr) phase, which results in first generation and ‘extreme’ composition stars, and a delayed phase ($\gtrsim$40 Myr), which results in the dilution of processed and pristine gas and the formation of intermediate composition stars. For NGC 6402, the missing intermediate composition stars suggest the delayed phase terminated prematurely, and as a result the cluster may uniquely preserve details of the chemical enrichment process.


2009 ◽  
Vol 73 (1) ◽  
pp. 59-82 ◽  
Author(s):  
J. Berger ◽  
N. Ennih ◽  
J.-C. C. Mercier ◽  
J.-P. LiéGeois ◽  
D. Demaiffe

The Saghro Cenozoic lavas form a bimodal suite of nephelinites (with carbonatite xenoliths) and phonolites emplaced in the Anti-Atlas belt of Morocco. Despite the paucity of samples with intermediate composition between the two main types of lava (only one phonotephrite flow is reported in this area), whole-rock major element modelling shows that the two main lithologies can be linked by fractional crystallization. The most primitive modelled cumulates are calcite-bearing olivine clinopyroxenites, whereas the final stages of differentiation are characterized by the formation of nepheline-syenite cumulates. This evolution trend is classically observed in plutonic alkaline massifs associated with carbonatites. Late-stage evolution is responsible for the crystallization of hainite- and delhayelite-bearing microdomains, for the transformation of aegirine-augite into aegirine (or augite into aegirine-augite), and for the crystallization of lorenzenite and a eudialyte-group mineral as replacement products of titanite. These phases were probably formed, either by crystallization from late residual peralkaline melts, or by reaction of pre-existing minerals with such melt, or hydrothermal peralkaline fluid.


Sign in / Sign up

Export Citation Format

Share Document