scholarly journals Unification of Calculating the Performance of Vehicles and Transport-Technological Facilities

2020 ◽  
Vol 30 (4) ◽  
pp. 637-658
Author(s):  
Nikolay A. Maistrenko ◽  
Viktor P. Uvarov ◽  
Aleksandr G. Levshin ◽  
Dmitriy O. Khort ◽  
Olesya S. Vorotnikova

Introduction. In agricultural production during transportation of goods it is accepted to allocate transport and transport-technological processes with the corresponding methods of rationing works. The peculiarity of the processes is the sequential execution of cyclic operations, providing transportation of technological material to the destination directly or with preliminary collection (subsequent distribution) on the field. At the same time, if the goods are moved directly between points, excluding technological (field) operations, this process can be considered a purely transport one, a special case of the transport and technological process. In this regard, it is proposed to consider this process as a component of the transport and technological process, which in turn requires correcting the applied methods for setting performance standards. The aim of the study is to develop a mathematical model and algorithm for standardizing the calculation of the performance of different vehicles and transport and technological facilities through formulating the dependence of the performance components on the power of the said facilities as their main classifier. Materials and Methods. The performance standards were identified by the extrapolation, interpolation or approximation methods based on their estimated performance. The classical method of differentiating functions was used to find the extrema. Результаты исследования.At length of fertilizer transportation by direct-flow technology LГ = 9 km and application dose U = 0.06 kg/m2, the following values of transport and technological facilities performance have been obtained: a) for vehicles to deliver fertilizers to fertilizer storehouses by Ural-432065 truck (body) W = 9.1 t/h, W = 6.3 t/h for tractor with MTZ-82 trailer. 1+2PTS-6; b) for transport and technological facilities to transport and distribute fertilizers by Ural-432065 (Amazone spreader) W = 5.5 t/h, W = 3.9 t/h for tractor with MTZ-82.1+RUM-6 trailer. Discussion and Conclusion. Based on the analysis of methods, the authors have made the case for the unification of calculating the standardized volumes of works, choice of composition, and comparison of the effectiveness of using vehicles, if they are used as transport and transport-technological facilities. A mathematical model and algorithm for a uniform calculation of the performance of different transport and technological facilities are presented. The way to determine the approximate rate of generation of funds that do not have standard indicators of work. The explanation of the innovations is accompanied by a formula device, which is based on the conclusion of the dependencies of out- and in-cycle components of the shift time balance on the engine power of the mobile device. The block diagram of the algorithm to calculate performance standards for vehicles is illustrated. The implementation of the algorithm is given by the example of using a specialized vehicle for transport and transport-technological operations.

2020 ◽  
Vol 7 (2) ◽  
pp. 21-28
Author(s):  
SALI RADZHAPOV ◽  
◽  
RUSTAM RAKHIMOV ◽  
BEGJAN RADZHAPOV ◽  
MARS ZUFAROV

The article describes the developed radiometer for Express measurement of alpha radiation of radioactive elements based on a large-diameter silicon detector. The main element of the PPD detector is made using computer mathematical modeling of all stages of the technological process of manufacturing detectors, taking into account at each stage the degree of influence of the properties of the initial silicon on the electrophysical and radiometric characteristics of the detector. Detectors are manufactured for certain types of devices. The developed radiometer is designed to measure alpha radiation of natural isotopes (238U, 234U, 232Th, 226Ra, 222Rn, 218Po, 214Bi, etc.) in various environments. It also shows the principle of operation of the device, provides a block diagram of the measuring complex, describes the electronic components of the radiometer, as well as the block diagram. Signal transformations (spectrum transfer, filtering, accumulation) are implemented programmatically on the basis of a digital processing module. The device can detect the presence of specific elements in various environments, as well as protect people from the harmful effects of adverse radiation and can be used both in the field and stationary.


2002 ◽  
Vol 34 (03) ◽  
pp. 484-490 ◽  
Author(s):  
Asger Hobolth ◽  
Eva B. Vedel Jensen

Recently, systematic sampling on the circle and the sphere has been studied by Gual-Arnau and Cruz-Orive (2000) from a design-based point of view. In this note, it is shown that their mathematical model for the covariogram is, in a model-based statistical setting, a special case of the p-order shape model suggested by Hobolth, Pedersen and Jensen (2000) and Hobolth, Kent and Dryden (2002) for planar objects without landmarks. Benefits of this observation include an alternative variance estimator, applicable in the original problem of systematic sampling. In a wider perspective, the paper contributes to the discussion concerning design-based versus model-based stereology.


2014 ◽  
Vol 598 ◽  
pp. 529-533
Author(s):  
Erdi Gülbahçe ◽  
Mehmet Çelik ◽  
Mustafa Tinkir

The main purpose of this study is to prepare mathematical model for active vibration control of a structure. This paper presents the numerical and experimental modal analysis of aluminum cantilever beam in order to investigate the dynamic characteristics of the structure. The results will be used for active vibration control of structure’s experimental setup. Experimental natural frequencies are obtained and compared to verify the proposed numerical model by using modal analysis results. MATLAB System Identification Toolbox and ANSYS harmonic response function are used together to estimate beam’s equations of motion which include its amplitude, frequency and phase angle values. Moreover, the mathematical model of beam is simulated in MATLAB/Simulink software to determine the dynamic behavior of the proposed system. Furthermore, another prediction model approach with multiple input and single output is used to find the realistic behavior of beam via an adaptive neural-network-based fuzzy logic inference system, in addition, impulse responses of the proposed models are compared and the control block diagram for active vibration control is implemented. As a first iteration, PID type controller is designed to suppress vibrations against the disturbance input. The results of modal analysis, the prediction models, controlled and uncontrolled system responses are presented in graphics and tables for obtaining a sample numerical active vibration control.


2020 ◽  
Vol 1 (4) ◽  
pp. 46-60
Author(s):  
B.B. Kositsyn ◽  

Introduction. The use of the method of full-scale-mathematical modeling in “real time” opens up wide opportunities associated with the analysis of the modes of operation of the “man – vehicle – environment” system, as well as the study of the loading of units and assemblies of vehicles. The existing research complexes of full-scale mathematical modeling are suitable for obtaining most of the indicators usually determined by full-scale tests. The difference lies in the ability to fully control the course of virtual testing, recording any parameters of the vehicle movement, taking into account the “human factor”, as well as complete safety of the experiment. Purpose of research. The purpose of this work is to create a mathematical model of the dynam-ics of a wheeled vehicle, suitable for use in such a complex of full-scale mathematical modeling and assessment of the load of transmission units in conditions close to real operation. Methodology and methods. The proposed model is based on the existing model of the dynamics of a wheeled vehicle developed at Bauman Moscow State Technical University. Within the framework of the model, the dynamics of a vehicle is described as a plane motion of a rigid body in a horizontal plane. The principle of possible displacements is applied to determine the normal reac-tions of the bearing surface. The interaction of the wheel with the ground in the plane of the support base is described using an approach based on the “friction ellipse” concept. To enable the driver and operator of the full-scale mathematical modeling complex to drive a virtual vehicle in “real time” mode, the mathematical model is supplemented with a control system that communicates between the control parameter set by the driver by pressing the accelerator and brake pedals and the control actions of the vehicle's transmission units, such as: an electric machine, an internal combustion en-gine, a hydrodynamic retarder and a brake system. The article presents a block diagram of the de-veloped control algorithm, as well as approbation of the system's operation in a complex of full-scale mathematical modeling. Results and scientific novelty. A mathematical model of the dynamics of a wheeled vehicle was developed. It opens up wide possibilities for studying the modes of operation of the “driver-vehicle-environment” system in “real time”, using a complex of full-scale mathematical modeling. Practical significance. A mathematical model of the dynamics of a wheeled vehicle was devel-oped. It is supplemented with an algorithm for the distribution of traction / braking torques between the transmission units, which provide a connection between the driver's pressing on the accelerator / brake pedal and the control parameters of each of the units.


2021 ◽  
Vol 5 (47) ◽  
pp. 19-19
Author(s):  
Irina Lоntseva ◽  
Vyacheslav Sennikov

To increase productivity in agricultural production, combined wide-grip machines are being created, aggregated with tractors of traction classes from 5 and higher. In addition, according to agrotechnical requirements, the pressure of the mover on the soil should be minimal, as well as the number of passes over the surface of the field. These contradictions can be solved by ballasting of tractors, which allows using engine power to increase tractive effort. Ballasting affects energy saturation. Increased energy saturation with appropriate ballasting makes it possible to compose machine-tractor units (MTU) according to a more accurate ratio of the tractor pulling force and the unit's pulling resistance. The most in demand in modern agriculture are tractors of 5-6 traction classes produced by domestic and foreign tractor-building plants with an internal combustion engine with a capacity of 220-320 kW and an operating weight of 115-150 kN. The article contains a two-way analysis of variance, which makes it possible to determine the greatest influence on the ballasting of a tractor. A diagram is constructed that gives an idea of which of the studied brands of tractors can be recommended for performing agricultural operations, taking into account ballasting and compliance with agrotechnical requirements. Keywords: TRACTOR, BALLASTING, ENERGY SATURATION, TWO-FACTOR ANALYSIS OF VARIANCE


2021 ◽  
pp. 68-71
Author(s):  

The use of mathematical models is of great importance for the automation of the design of technological processes. Representation of the geometric parameters of the part in the form of mathematical models allows automating the development of the structure and calculation of the parameters of the technological process, which is important for the complete digitalization of the technological preparation of production. Keywords: technological process, design, mathematical model, digitalization. [email protected]


2021 ◽  
pp. 58-61
Author(s):  
F.B. Ismayilova ◽  

The results of investigations and measurements of actual pressure values carried out recently in technological-field pipelines show that the nature of pressure distribution in multi-phase pipelines differs from those in mono-phase ones. The paper analyzes the aspects affecting the pressure distribution in gas-saturated fluids in the presence of phase transformations. Considering the changes in compressibility of gas-saturated mixture, a mathematical model for pressure distribution through the length of pipeline has been developed. It was defined that depending on the compressibility ratio and flow regime, the pressure distribution in multi-phase pipeline decreases steadily at an exponential rate.


2012 ◽  
Vol 619 ◽  
pp. 472-475
Author(s):  
Pan Guo Qi ◽  
Li Wei Zhao ◽  
Pei Chao Cong ◽  
Hui Wang

A hydraulic Control Loading System (CLS) based on velocity-loop was developed and installed on our flight simulator earlier days, but the CLS cannot keep stable in some conditions. This problem is discussed in this paper. The mathematical model of velocity-loop-based CLS is firstly developed with the method of transfer function block diagram. Then, system’s stability conditions are put forward using Roth criterion based on the system model developed. At last, the experiments proves the stability


2020 ◽  
Vol 11 (4) ◽  
pp. 41-47
Author(s):  
P. S. Popyk ◽  

The article presents the results of field experimental studies to establish the effect of the speed of displacement of the metering element on the probability of the appearance of gaps and twins when sowing seeds with a pneumatic-mechanical seeding device equipped with directional cells. The object of the study is a seeding device with a directional metering unit, an innovative design solution of which will improve agricultural production based on resource conservation. As a result of the use of a new constructive solution of the dispenser, the increased accuracy of the technological process of forming a regular single-grain flow of seeds.


Sign in / Sign up

Export Citation Format

Share Document