scholarly journals Deadlock Detection using Static Analysis

Author(s):  
Sergey Andreevich Polyakov ◽  
Alexey Evgenevich Borodin

The paper describes an extension to summary based static program analysis to find deadlock errors. Summary based analysis is a popular approach aimed at the detection of bugs in programs due to its high performance and scalability. At the same time, the implementation of deadlock detectors in such an analysis is nontrivial, because there is no information about the locks held higher in the call stack during the process of function intraprocedural analysis. A lock graph, which is built during the main analysis, is used to model the semantics of multithreaded programs. Lock graph is a modification of call graph which contains additional information about held locks. After the lock graph is built, the deadlock detector is launched. Both the construction of the lock graph and the deadlock detection algorithm do not require significant processor time. On the performed measurements, the total analysis time increased by 4%. Based on the results of the analysis of 8 open source projects in C/C++/Java with a total size of more than 14 million lines of code, the proposed algorithm showed a high level of true positives. The described algorithms were implemented in the Svace tool.

2020 ◽  
Author(s):  
James McDonagh ◽  
William Swope ◽  
Richard L. Anderson ◽  
Michael Johnston ◽  
David J. Bray

Digitization offers significant opportunities for the formulated product industry to transform the way it works and develop new methods of business. R&D is one area of operation that is challenging to take advantage of these technologies due to its high level of domain specialisation and creativity but the benefits could be significant. Recent developments of base level technologies such as artificial intelligence (AI)/machine learning (ML), robotics and high performance computing (HPC), to name a few, present disruptive and transformative technologies which could offer new insights, discovery methods and enhanced chemical control when combined in a digital ecosystem of connectivity, distributive services and decentralisation. At the fundamental level, research in these technologies has shown that new physical and chemical insights can be gained, which in turn can augment experimental R&D approaches through physics-based chemical simulation, data driven models and hybrid approaches. In all of these cases, high quality data is required to build and validate models in addition to the skills and expertise to exploit such methods. In this article we give an overview of some of the digital technology demonstrators we have developed for formulated product R&D. We discuss the challenges in building and deploying these demonstrators.<br>


2020 ◽  
Vol 12 (2) ◽  
pp. 19-50 ◽  
Author(s):  
Muhammad Siddique ◽  
Shandana Shoaib ◽  
Zahoor Jan

A key aspect of work processes in service sector firms is the interconnection between tasks and performance. Relational coordination can play an important role in addressing the issues of coordinating organizational activities due to high level of interdependence complexity in service sector firms. Research has primarily supported the aspect that well devised high performance work systems (HPWS) can intensify organizational performance. There is a growing debate, however, with regard to understanding the “mechanism” linking HPWS and performance outcomes. Using relational coordination theory, this study examines a model that examine the effects of subsets of HPWS, such as motivation, skills and opportunity enhancing HR practices on relational coordination among employees working in reciprocal interdependent job settings. Data were gathered from multiple sources including managers and employees at individual, functional and unit levels to know their understanding in relation to HPWS and relational coordination (RC) in 218 bank branches in Pakistan. Data analysis via structural equation modelling, results suggest that HPWS predicted RC among officers at the unit level. The findings of the study have contributions to both, theory and practice.


2021 ◽  
pp. 1-7
Author(s):  
Haniel Fernandes

<b><i>Background:</i></b> Soccer is an extremely competitive sport, where the most match important moments can be defined in detail. Use of ergogenic supplements can be crucial to improve the performance of a high-performance athlete. Therefore, knowing which ergogenic supplements are important for soccer players can be an interesting strategy to maintain high level in this sport until final and decisive moments of the match. In addition, other supplements, such as dietary supplements, have been studied and increasingly referenced in the scientific literature. But, what if ergogenic supplements were combined with dietary supplements? This review brings some recommendations to improve performance of soccer athletes on the field through dietary and/or ergogenic supplements that can be used simultaneously. <b><i>Summary:</i></b> Soccer is a competitive sport, where the match important moments can be defined in detail. Thus, use of ergogenic supplements covered in this review can improve performance of elite soccer players maintaining high level in the match until final moments, such as creatine 3–5 g day<sup>−1</sup>, caffeine 3–6 mg kg<sup>−1</sup> BW around 60 min before the match, sodium bicarbonate 0.1–0.4 g kg<sup>−1</sup> BW starting from 30 to 180 min before the match, β-alanine 3.2 and 6.4 g day<sup>−1</sup> provided in the sustained-release tablets divided into 4 times a day, and nitrate-rich beetroot juice 60 g in 200 mL of water (6 mmol of NO3<sup>−</sup> L) around 120 min before match or training, including a combination possible with taurine 50 mg kg<sup>−1</sup> BW day<sup>−1</sup>, citrulline 1.2–3.4 g day<sup>−1</sup>, and arginine 1.2–6 g day<sup>−1</sup>. <b><i>Key Messages:</i></b> Soccer athletes can combine ergogenic and dietary supplements to improve their performance on the field. The ergogenic and dietary supplements used in a scientifically recommended dose did not demonstrate relevant side effects. The use of various evidence-based supplements can add up to further improvement in the performance of the elite soccer players.


Author(s):  
Xiaoling Luo ◽  
Adrian Cottam ◽  
Yao-Jan Wu ◽  
Yangsheng Jiang

Trip purpose information plays a significant role in transportation systems. Existing trip purpose information is traditionally collected through human observation. This manual process requires many personnel and a large amount of resources. Because of this high cost, automated trip purpose estimation is more attractive from a data-driven perspective, as it could improve the efficiency of processes and save time. Therefore, a hybrid-data approach using taxi operations data and point-of-interest (POI) data to estimate trip purposes was developed in this research. POI data, an emerging data source, was incorporated because it provides a wealth of additional information for trip purpose estimation. POI data, an open dataset, has the added benefit of being readily accessible from online platforms. Several techniques were developed and compared to incorporate this POI data into the hybrid-data approach to achieve a high level of accuracy. To evaluate the performance of the approach, data from Chengdu, China, were used. The results show that the incorporation of POI information increases the average accuracy of trip purpose estimation by 28% compared with trip purpose estimation not using the POI data. These results indicate that the additional trip attributes provided by POI data can increase the accuracy of trip purpose estimation.


Diversity ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 71
Author(s):  
Charalampos Dimitriadis ◽  
Ivoni Fournari-Konstantinidou ◽  
Laurent Sourbès ◽  
Drosos Koutsoubas ◽  
Stelios Katsanevakis

Understanding the interactions among invasive species, native species and marine protected areas (MPAs), and the long-term regime shifts in MPAs is receiving increased attention, since biological invasions can alter the structure and functioning of the protected ecosystems and challenge conservation efforts. Here we found evidence of marked modifications in the rocky reef associated biota in a Mediterranean MPA from 2009 to 2019 through visual census surveys, due to the presence of invasive species altering the structure of the ecosystem and triggering complex cascading effects on the long term. Low levels of the populations of native high-level predators were accompanied by the population increase and high performance of both native and invasive fish herbivores. Subsequently the overgrazing and habitat degradation resulted in cascading effects towards the diminishing of the native and invasive invertebrate grazers and omnivorous benthic species. Our study represents a good showcase of how invasive species can coexist or exclude native biota and at the same time regulate or out-compete other established invaders and native species.


1994 ◽  
Vol 23 (3) ◽  
pp. 21-26 ◽  
Author(s):  
Chim-fu Yeung ◽  
Sheung-lun Hung ◽  
Kam-yiu Lam

Author(s):  
Umar Ibrahim Minhas ◽  
Roger Woods ◽  
Georgios Karakonstantis

AbstractWhilst FPGAs have been used in cloud ecosystems, it is still extremely challenging to achieve high compute density when mapping heterogeneous multi-tasks on shared resources at runtime. This work addresses this by treating the FPGA resource as a service and employing multi-task processing at the high level, design space exploration and static off-line partitioning in order to allow more efficient mapping of heterogeneous tasks onto the FPGA. In addition, a new, comprehensive runtime functional simulator is used to evaluate the effect of various spatial and temporal constraints on both the existing and new approaches when varying system design parameters. A comprehensive suite of real high performance computing tasks was implemented on a Nallatech 385 FPGA card and show that our approach can provide on average 2.9 × and 2.3 × higher system throughput for compute and mixed intensity tasks, while 0.2 × lower for memory intensive tasks due to external memory access latency and bandwidth limitations. The work has been extended by introducing a novel scheduling scheme to enhance temporal utilization of resources when using the proposed approach. Additional results for large queues of mixed intensity tasks (compute and memory) show that the proposed partitioning and scheduling approach can provide higher than 3 × system speedup over previous schemes.


Author(s):  
Breno A. de Melo Menezes ◽  
Nina Herrmann ◽  
Herbert Kuchen ◽  
Fernando Buarque de Lima Neto

AbstractParallel implementations of swarm intelligence algorithms such as the ant colony optimization (ACO) have been widely used to shorten the execution time when solving complex optimization problems. When aiming for a GPU environment, developing efficient parallel versions of such algorithms using CUDA can be a difficult and error-prone task even for experienced programmers. To overcome this issue, the parallel programming model of Algorithmic Skeletons simplifies parallel programs by abstracting from low-level features. This is realized by defining common programming patterns (e.g. map, fold and zip) that later on will be converted to efficient parallel code. In this paper, we show how algorithmic skeletons formulated in the domain specific language Musket can cope with the development of a parallel implementation of ACO and how that compares to a low-level implementation. Our experimental results show that Musket suits the development of ACO. Besides making it easier for the programmer to deal with the parallelization aspects, Musket generates high performance code with similar execution times when compared to low-level implementations.


Sign in / Sign up

Export Citation Format

Share Document