scholarly journals Formal Rules to Produce Object Notation for EXPRESS Schema-Driven Data

Author(s):  
Vitaly Adolfovich Semenov ◽  
Semen Vasilyevich Arishin ◽  
Georgii Vitalyevich Semenov

Recently, product data management systems (PDM) are widely used to conduct complex multidisciplinary projects in various industrial domains. The PDM systems enable teams of designers, engineers, and managers to remotely communicate on a network, exchange and share common product information. To integrate CAD/CAM/CAE applications with the PDM systems and ensure their interoperability, a dedicated family of standards STEP (ISO 10303) has been developed and employed. The STEP defines an object-oriented language EXPRESS to formally specify information schemas as well as file formats to store and transfer product data driven by these schemas. These are clear text encoding format SPF and STEP-XML. Nowadays, with the development and widespread adoption of Web technologies, the JSON language is getting increasingly popular due to it being apropos for the tasks of object-oriented data exchange and storage, as well as its simple, easy to parse syntax. The paper explores the topic of the suitability of the JSON language for the unambiguous representation, storage and interpretation of product data. Under the assumption that the product data can be described by arbitrary information schemas in EXPRESS, formal rules for the producing JSON notation are proposed and presented. Explanatory examples are provided to illustrate the proposed rules. The results of computational experiments conducted confirm the advantages of the JSON format compared to SPF and STEP-XML, and motivate its widespread adoption when integrating software applications.

1991 ◽  
Vol 23 (4) ◽  
pp. 237-243 ◽  
Author(s):  
M.S. Bloor ◽  
J. Owen
Keyword(s):  

Author(s):  
Esther A. Edwards-lwe

Abstract The ability to exchange and share product data between and within enterprises is essential for implementing the concepts of concurrent engineering as well as operating in a global market economy. STEP, the STandard for the Exchange of Product Model Data, is an international effort to standardize product information. Product information is used by manufacturing enterprise to design, produce, and maintain a product. The purpose of STEP is to prescribe a neutral mechanism capable of completely representing product data throughout the life cycle of a product. Data sharing can only be discussed in the context of a specific application. The scope of STEP data sharing architecture has progressed from a single shared facility to sharing multiple distributed facilities. This paper discusses the lessons learned from a prototype implementation of the mechanical part design process(es) captured in a network of heterogeneous computers and database management systems to allow for data exchange and sharing between and within an enterprise.


Author(s):  
Youchon Oh ◽  
Soon-Hung Han ◽  
Seung-Kuh Lee ◽  
SooHyun Shin

Abstract Product data exchange between heterogeneous CAD/CAM/PDM systems is an issue for the integration of production systems. STEP offers a mechanism of product data exchange between heterogeneous systems. This paper introduces a UML-based mapping methodology for the product data exchange. The suggested mapping methodology has been applied to two different mappings. One is a mapping for the data exchange between a CAD and a PDM system. The other is the STEP to XML mapping for the information communication on the Internet.


1990 ◽  
Vol 6 (02) ◽  
pp. 125-137
Author(s):  
John Kloetzli ◽  
Dan Billingsley

The application of computer-aided design (CAD) and manufacturing (CAM) techniques in the marine industry has increased significantly in recent years. With more individual designers and shipyards using CAD within their organizations, the pressure to transfer CAD data between organizations has also increased. The Navy/Industry Digital Data Exchange Standards Committee (NIDDESC) provides a mechanism for public and private organizations to cooperate in the development of digital data transfer techniques. Organizationally, NIDDESC is a cost-sharing venture between private firms and government organizations. This effort arose from the Naval Sea Systems Command (NAVSEA) in cooperation with the National Shipbuilding Research Program. The members include leading professionals in the marine industry from several major design firms, private shipyards, naval shipyards, and government laboratories. All members are directly involved in CAD/CAM in their organizations and together represent a broad spectrum of experience and perspectives. NIDDESC has many subcommittees devoted to specific areas of digital data transfer. The basic objective is to develop an industry-wide consensus on product data models for ship structure and distribution systems. Efforts include contributions to the Initial Graphics Exchange Standard, the Product Data Exchange Standard, preparation of a Recommended Practices Manual and the analysis of ship production data flows. NIDDESC has made contributions to the development of CALS standards, including MIL-STD-1840, DOD-IGES, SGML, and MIL-D-28000.


2017 ◽  
Vol 5 (1) ◽  
pp. 54-67 ◽  
Author(s):  
Alain Pfouga ◽  
Josip Stjepandić

Abstract With their practical introduction by the 1970s, virtual product data have emerged to a primary technical source of intelligence in manufacturing. Modern organization have since then deployed and continuously improved strategies, methods and tools to feed the individual needs of their business domains, multidisciplinary teams, and supply chain, mastering the growing complexity of virtual product development. As far as product data are concerned, data exchange, 3D visualization, and communication are crucial processes for reusing manufacturing intelligence across lifecycle stages. Research and industry have developed several CAD interoperability, and visualization formats to uphold these product development strategies. Most of them, however, have not yet provided sufficient integration capabilities required for current digital transformation needs, mainly due to their lack of versatility in the multi-domains of the product lifecycle and primary focus on individual product descriptions. This paper analyses the methods and tools used in virtual product development to leverage 3D CAD data in the entire life cycle based on industrial standards. It presents a set of versatile concepts for mastering exchange, aware and unaware visualization and collaboration from single technical packages fit purposely for various domains and disciplines. It introduces a 3D master document utilizing PDF techniques, which fulfills requirements for electronic discovery and enables multi-domain collaboration and long-term data retention for the digital enterprise. Highlights With their practical introduction by the 1970s, virtual product data have emerged to a primary technical source of intelligence in manufacturing. Modern organization have since then deployed and continuously improved strategies, methods and tools to feed the individual needs of their business domains, multidisciplinary teams, and supply chain, mastering the growing complexity of virtual product development. As far as product data are concerned, data exchange, 3D visualization, and communication are crucial processes for reusing manufacturing intelligence across lifecycle stages. Research and industry have developed several CAD interoperability, and visualization formats to uphold these product development strategies. Most of them, however, have not yet provided sufficient integration capabilities required for current digital transformation needs, mainly due to their lack of versatility in the multi-domains of the product lifecycle and primary focus on individual product descriptions. This paper analyses the methods and tools used in virtual product development to leverage 3D CAD data in the entire life cycle. It presents a set of versatile concepts for mastering exchange, aware and unaware visualization and collaboration from single technical packages fit purposely for various domains and disciplines. It introduces a 3D master document utilizing PDF techniques, which fulfills requirements for electronic discovery and enables multi-domain collaboration and long-term data retention for the digital enterprise. 3D interoperability makes an important contribution to engineering collaboration. Several formats made to that end successively deal with challenges of their time. Some of these such as STEP are highly verbose formats, which gradually encapsulate all information necessary to define a product, its manufacture, and lifecycle support. Others are focusing best on lightweight visualization use cases and endure better with increasing size and complexity of data. Traditional formats like STEP and JT, though, are not capable of supporting the publishing activity in even broader fashion. New tendencies therefore are aiming at strengthening these individual formats through combination with complementary standards or by using document-based approaches. Unlike STEP or JT, 3D PDF can serve multiple purposes and leverages 3D data downstream throughout the product lifecycle to create, distribute and manage ubiquitous, highly consumable, role-specific rich renditions. Based on its container structure, 3D PDF is a fundamentally different approach from traditional experience established in product development – it is an exceptionally proficient contextual aggregation of multi-domain and multi-disciplinary product data. The manufacturing community should embrace it as an addition and great improvement to current engineering collaboration standards. All engineering components required for its descriptions are meanwhile published international standards. The productive use of 3D PDF for sure requires a change in the current mode of operation, be it simply because the traditional CAD model promptly demands new technical descriptions. More perspectives, which have not been primary focus of this approach need to be addressed in order to implement the 3D digital master concept of this paper in the industry. For the complete process to work properly, the actual workflows of today's business organizations must succeed a readiness check involving enhanced technical documentation capabilities of the authoring (CAx) applications based on 3D, PLM, and manufacturing workflows as well as new ways for engineering data communication with supply chain partners in the digital enterprise.


Sign in / Sign up

Export Citation Format

Share Document