scholarly journals How a 16% Carbamide Peroxide Home Bleaching Agent Affects the Surface Properties of Chairside CAD/CAM Materials?

Author(s):  
Tugba Serin-Kalay ◽  
Beyza Zaim

Surface changes of restorative materials after bleaching have clinical importance in terms of the durability and survival of restorations. This study aimed to evaluate the effect of home bleaching on the surface roughness, microhardness, and surface analysis of four different types of chairside computer-aided design and computer-aided manufacturing (CAD/CAM) materials. Specimens were prepared from composite resin (Brilliant Crios: BC), resin nanoceramic (Lava Ultimate: LU), polymer-infiltrated ceramic-network (Vita Enamic: VE), and zirconia-reinforced lithium silicate glass-ceramic (Vita Suprinity: VS) CAD/CAM materials. Specimens were polished using 800, 1000, 1200, and 2000 grit SiC papers. Each restorative material was randomly divided into two groups; control and bleaching (n=10). The 16% carbamide peroxide bleaching agent (Whiteness Perfect 16%, FGM) was applied to the specimens for 4 h/day for 14 days. Surface roughness values (Ra) were obtained using a profilometer, and microhardness values (VHN) were obtained using a Vickers microhardness test. Surface analysis of specimens was evaluated by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Data were analyzed Two-way ANOVA and Fisher’s Least Significant Difference (LSD) test (p<0.05). After bleaching, the surface roughness of BC (p<0.001) and VE (p<0.032) significantly increased. Bleaching did not significantly affect the microhardness of CAD/CAM materials. SEM evaluation showed material-dependent surface damages after bleaching procedures. The effect of 16% carbamide peroxide home bleaching agent on surface roughness and microhardness of chairside CAD/CAM materials is material-dependent. Before bleaching, restorative materials should be protected by applying a protective barrier and contact with the bleaching agent should be minimized. Also, after bleaching, the restoration surface should be carefully inspected, and re-polishing might be beneficial.

2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Necla Demir ◽  
Muhammet Karci ◽  
Mutlu Ozcan

Objective. To determine the influence of the home bleaching agent, Opalescence PF, on the surface roughness and microhardness of glazed glassy matrix CAD-CAM ceramics. Materials and Methods. The 28 sintered leucite- and lithium disilicate-reinforced ceramic specimens (IPS Empress CAD and IPS e.max CAD) were divided into control and bleached groups. The home bleaching agent was applied to specimens of bleached groups for 7 days. The surface roughness and microhardness of all specimens were measured. A scanning electron microscope was used to evaluate the surface properties. The data were statistically analyzed by two-way ANOVA. Results. The control e.max CAD showed the lowest surface roughness values. For both Empress and e.max CAD, surface roughness was significantly higher for the bleached group (p<0.05). No significant differences in microhardness were observed. Conclusions. According to our study, patients should be careful when using home bleaching agents because whitening agents can affect the mechanical properties of full ceramic restorations like e.max CAD and Empress CAD. Ceramic polishing may be required in clinical situations where ceramic restorations are accidentally exposed to bleaching gels.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lujain I. Aldosari ◽  
Abdulkhaliq A. Alshadidi ◽  
Amit Porwal ◽  
Nasser M. Al Ahmari ◽  
Mohammed M. Al Moaleem ◽  
...  

Abstract Background The purpose of this study evaluates and compares the effect of surface roughness (Ra) and color stability on computer-aided design/computer-aided manufacturing (CAD/CAM) hybrid resin (Vita Enamic), feldspathic (Vitablocs® Mark II), and lithium disilicate Zirconia (Vita Suprinity) glazed or polished ceramics immersed in hot Arabic Qahwa and cold coffee. Methods A total of 96 standardized samples were prepared from CAD/CAM restorative materials. Half of the samples were polished as per the manufacturer’s instructions using a porcelain polishing kit, and the other half were glazed. Samples were distributed and immersed in hot Arabian Qahwa and cold coffee followed by thermocycling. Ra measurements and color changes were conducted before and after immersion. SEM images were captured from each type of glazed or polished ceramic. One-way ANOVA paired Student’s t-test, and Bonferroni test were conducted to detect significant difference between the groups. P > 0.05 was a significant level. Results Of all the tested samples, Ra increased without any significant difference; however, mean color changes (ΔE*) showed significant differences. An increase in Ra was noted for all the glazed and polished samples after immersion and thermocycling. However, differences were significant only in VM II. In addition, ΔE* was significant only in Vita Suprinity (VS) samples. For immersion groups, significant Ra changes were noticed in glazed samples, only in Vita Enamic (VE) with no ΔE*. In polished samples, mean Ra changes were observed in VM II and VS samples. Significant differences were also noticed in polished VE and VS subgroups of ΔE*. Conclusions Ra affects all the tested samples, providing higher values on the polished specimens. The ΔE* caused by hot Arabic Qahwa and cold coffee on glazed or polished CAD/CAM restorative materials were clinically acceptable.


2013 ◽  
Vol 38 (3) ◽  
pp. 316-323 ◽  
Author(s):  
MQ AlQahtani

SUMMARY Purpose This in vitro study was undertaken to evaluate the effect of a 10% carbamide peroxide bleaching agent on the microhardness of four types of direct resin-based restorative materials. Materials and Methods Thirty disk-shaped specimens (10.0 mm diameter × 2.0 mm depth) of each material, including a microhybrid resin composite (Z250), a nanofilled resin composite (Z350), a silorane-based low-shrink resin composite (P90), and a hybrid resin composite (Valux Plus), were fabricated and then polished with medium, fine, and superfine polishing discs. After being polished, specimens were cleaned with distilled water for 2 min in an ultrasonic bath to remove any surface debris and then stored in distilled water at 37°C for 24 hours. Specimens from each material were divided into three groups (n=10). One group was selected as a control group (nontreated with bleaching agent). The other two groups were treated with bleaching agent for 14 days (group A) and for 14 days followed by immersion in artificial saliva for 14 days (group B). The top surfaces of the specimens in the different groups were also subjected to the Vickers hardness test with a load of 300 g and 15-second dwell time. Data were analyzed with a one-way analysis of variance and Tukey's HSD test (α = 0.05). Results There was a general reduction of Vickers hardness numbers (VHN) values of treated groups compared with the control group for each material used, but this reduction was minimal, with no significant difference between groups in Z250, whereas the other three materials (Z350, P90, and Valux Plus) showed a significant reduction of VHN of treated groups compared with the control group. Conversely, the findings showed no significant difference between treated groups A and B in all materials used except P90. Conclusion A 10% carbamide peroxide bleaching agent had an adverse effect on the microhardness of nanofilled, silorane-based low-shrink, and hybrid types of resin-based composite materials compared with the microhybrid type.


2021 ◽  
Author(s):  
CA Jurado ◽  
A Tsujimoto ◽  
H Watanabe ◽  
NG Fischer ◽  
JA Hasslen ◽  
...  

SUMMARY Objective: The purpose of this study was to evaluate the effectiveness of five different polishing systems on a computer-aided design and computer-aided manufacturing (CAD/CAM) polymer-infiltrated ceramic-network restoration with nanoscale assessment using atomic force microscopy (AFM) and visual assessment performed by dental school senior students and faculty members. Method: Forty-eight full coverage crowns were milled out of polymer-infiltrated ceramic-network CAD/CAM blocks (Vita Enamic) for polishing with one company proprietary, two ceramic and two composite polishing systems. The prepared crowns were divided into six groups: (1) no polishing (control); (2) polishing with Vita Enamic Polishing Kit (VEna); (3) polishing with Shofu Porcelain Laminate Polishing Kit (SCer); (4) polishing with Brasseler Dialite Feather lite All- Ceramic Adjusting & Polishing System (BCer); (5) polishing with Shofu Composite Polishing Kit (SCom); and (6) polishing with Brasseler Composite Polishing Kit (BCom). The polished crown surface topography was observed, and surface roughness and area were measured with AFM. In addition, polished crowns were visually assessed by 15 senior dental students and 15 dental school faculty members. Results: All polishing treatments significantly reduced the surface roughness and area of the crown compared with the control. SCom and BCom showed significantly higher surface area than VEna, and the SCer and BCer groups were intermediate, showing no significant difference from either VEna or SCom and BCom. There were no significant differences in surface roughness between any of the systems. Dental students and faculty members classified the groups polished with VEna, SCer, and BCer groups as clinically acceptable, and they selected BCer group as the best polished restorations and the control group as the least polished restorations. Conclusions: Ceramic and composite polishing systems produced similar polishing results as that observed using a company proprietary polishing system. However, effectiveness for polishing using a company proprietary and ceramic polishing system tends to be higher than composite polishing systems.


2019 ◽  
Vol 45 (4) ◽  
pp. 442-452 ◽  
Author(s):  
N Ilie ◽  
G Furtos

Clinical Relevance Light transmission through dental materials and tooth structure has direct clinical implication on such factors as selecting an appropriate curing technique during a restorative process. SUMMARY Introduction: This study aims to quantify and compare the amount of light that passes through seven different types of direct and indirect restorative materials comprising light-cured resin based composites (regular and bulk-fill), computer-aided design/computer-aided manufacturing (CAD/CAM) restoratives such as resin based composites, poly(methyl methacrylate) (PMMA) resin, leucite glass-ceramic, lithium silicate glass-ceramic, feldspar ceramic, and the natural tooth structure. Methods and Materials: Individual sets (n=6) of plane-parallel test specimens (2 mm) of 32 restorative materials belonging to the aforementioned seven material types and the tooth structure were prepared. Within the analyzed materials, one leucite glass-ceramic and one lithium disilicate glass-ceramic were considered in two different translucencies. In addition, two light-cured resin composites, one CAD/CAM resin composite, and one lithium disilicate glass-ceramic were considered in two different shades. Optical properties (transmittance, T; absorbance, A; and opacity, O) of each material were calculated from the relationship between incident and transmitted irradiance [I(d)] using a violet-blue light-curing unit. Incident and transmitted irradiance were assessed in real time on a spectrophotometer. A multivariate analysis (general linear model) assessed the effects of various parameters on the optical properties. Results: A very strong influence of the parameter material was identified on I(d) (p&lt;0.001; partial eta squared, ηP2=0.953), T (p&lt;0.001; ηP2=0.951), A (p&lt;0.001; ηP2=0.925), and O (p&lt;0.001; ηP2=0.886), while the effect of the parameter material type was not significant (p=0.079, p=0.05, p=0.05, and p=0.051, respectively). Light attenuation differed significantly by material within each shade category and by shade category within the analyzed material. Conclusions: Attenuation of light through restorative materials and tooth structure is high (59.9% to 94.9%); thus, deficits in polymerization are difficult to compensate for by additional light exposure at the end of the restorative process.


2019 ◽  
Vol 31 (5) ◽  
pp. 451-456 ◽  
Author(s):  
Felipe Tarosso Rea ◽  
Ana Carolina Cabral Roque ◽  
Ana Paula Macedo ◽  
Rossana Pereira Almeida

Medicina ◽  
2020 ◽  
Vol 56 (3) ◽  
pp. 132
Author(s):  
Georgina García-Engra ◽  
Lucia Fernandez-Estevan ◽  
Javier Casas-Terrón ◽  
Antonio Fons-Font ◽  
Pablo Castelo-Baz ◽  
...  

Background and Objectives: To evaluate in vitro the fracture resistance and fracture type of computer-aided design and computer-aided manufacturing (CAD-CAM) materials. Materials and Methods: Discs were fabricated (10 × 1.5 mm) from four test groups (N = 80; N = 20 per group): lithium disilicate (LDS) group (control group): IPS e.max CAD®; zirconium-reinforced lithium silicate (ZRLS) group: VITA SUPRINITY®; polymer-infiltrated ceramic networks (PICN) group: VITA ENAMIC®; resin nanoceramics (RNC) group: LAVA™ ULTIMATE. Each disc was cemented (following the manufacturers’ instructions) onto previously prepared molar dentin. Samples underwent until fracture using a Shimadzu® test machine. The stress suffered by each material was calculated with the Hertzian model, and its behavior was analyzed using the Weibull modulus. Data were analyzed with ANOVA parametric statistical tests. Results: The LDS group obtained higher fracture resistance (4588.6 MPa), followed by the ZRLS group (4476.3 MPa) and PICN group (4014.2 MPa) without statistically significant differences (p < 0.05). Hybrid materials presented lower strength than ceramic materials, the RNC group obtaining the lowest values (3110 MPa) with significant difference (p < 0.001). Groups PICN and RNC showed greater occlusal wear on the restoration surface prior to star-shaped fracture on the surface, while other materials presented radial fracture patterns. Conclusion: The strength of CAD-CAM materials depended on their composition, lithium disilicate being stronger than hybrid materials.


2021 ◽  
Vol 9 (11) ◽  
pp. 486-497
Author(s):  
Mohamed A. Abuheikal ◽  
◽  
Sherihan M. Eissa ◽  
Hisham S. El Gabry ◽  
◽  
...  

Background: Computer-aided design and computer-aided manufacturing (CAD-CAM) techniques have lately become a popular treatment option for complete dentures fabrication. The two principal CAD-CAM techniques milling and 3D printing used in complete dentures construction have been approved and documented in showing clinically good results. Surface characteristics of dentures fabricated by these new techniques have a great effect on microbiological adherence to denture fitting surfaces. Aim: As other clinical trials and/or in-vitro studies evaluating the microbiological effect and its correlation with the surface roughness of the two advanced manufacturing techniques and comparing it with the conventional technique are lacking. Thus, this study aimed to further assess the microbiological and surface properties of different widely used denture base materials. Methodology: Thirty-six completely edentulous patients were selected and divided randomly into three groups Group I patients received conventional complete denture, Group II patients received CAD/CAM milled complete dentures and Group III patients received 3D printed complete dentures. All denture`s surface roughness were evaluated, also all patients were recalled after 3, 9 & 12 months respectively to evaluate the microbiological adherence. Results: Microbiological count significantly increased (P < 0.05) after 12 months in all groups, after 12 months there was a significant difference (P < 0.05) between three groups as group II (Milled) was significantly the lowest, then the group I (conventional), while group III (3D printed) was significantly the highest. Regarding surface roughness of group II (milled) was significantly the lowest, while group III (3D printed) was significantly the highest. Finally, there was a strong positive significant correlation between microbiological adherence and surface roughness in all groups as (r > 0.5). Conclusion: Group II (Milled) appeared to be the best regarding microbiological adherence and surface roughness followed by the group I (conventional) and finally group III (3D printed). Furthermore, it was evident that surface roughness has a great effect on microbiological adherence regardless of the fabrication technique utilized.


Sign in / Sign up

Export Citation Format

Share Document