Evaluation of Polishing Systems for CAD/CAM Polymer-Infiltrated Ceramic-Network Restorations

2021 ◽  
Author(s):  
CA Jurado ◽  
A Tsujimoto ◽  
H Watanabe ◽  
NG Fischer ◽  
JA Hasslen ◽  
...  

SUMMARY Objective: The purpose of this study was to evaluate the effectiveness of five different polishing systems on a computer-aided design and computer-aided manufacturing (CAD/CAM) polymer-infiltrated ceramic-network restoration with nanoscale assessment using atomic force microscopy (AFM) and visual assessment performed by dental school senior students and faculty members. Method: Forty-eight full coverage crowns were milled out of polymer-infiltrated ceramic-network CAD/CAM blocks (Vita Enamic) for polishing with one company proprietary, two ceramic and two composite polishing systems. The prepared crowns were divided into six groups: (1) no polishing (control); (2) polishing with Vita Enamic Polishing Kit (VEna); (3) polishing with Shofu Porcelain Laminate Polishing Kit (SCer); (4) polishing with Brasseler Dialite Feather lite All- Ceramic Adjusting & Polishing System (BCer); (5) polishing with Shofu Composite Polishing Kit (SCom); and (6) polishing with Brasseler Composite Polishing Kit (BCom). The polished crown surface topography was observed, and surface roughness and area were measured with AFM. In addition, polished crowns were visually assessed by 15 senior dental students and 15 dental school faculty members. Results: All polishing treatments significantly reduced the surface roughness and area of the crown compared with the control. SCom and BCom showed significantly higher surface area than VEna, and the SCer and BCer groups were intermediate, showing no significant difference from either VEna or SCom and BCom. There were no significant differences in surface roughness between any of the systems. Dental students and faculty members classified the groups polished with VEna, SCer, and BCer groups as clinically acceptable, and they selected BCer group as the best polished restorations and the control group as the least polished restorations. Conclusions: Ceramic and composite polishing systems produced similar polishing results as that observed using a company proprietary polishing system. However, effectiveness for polishing using a company proprietary and ceramic polishing system tends to be higher than composite polishing systems.

2018 ◽  
Vol 43 (4) ◽  
pp. 437-446 ◽  
Author(s):  
NG Fischer ◽  
A Tsujimoto ◽  
AG Baruth

SUMMARY Objective: Limited information is available on how to polish and finish zirconia surfaces following computer-aided design/computer-aided manufacturing (CAD/CAM), specifically, how differing application forces and reuse of zirconia polishing systems affect zirconia topography. Purpose: To determine the effect of differing, clinically relevant, polishing application forces and multiple usages of polishing burs on the surface topography of CAD/CAM zirconia. Methods: One hundred twenty 220-grit carbide finished zirconia disks were sintered according to manufacturer's directions and divided into two groups for the study of two coarse polishing bur types. Each group was divided into subgroups for polishing (15,000 rpm) at 15 seconds for 1.0 N, 4.5 N, or 11 N of force using a purpose-built fixture. Subgroups were further divided to study the effects of polishing for the first, fifth, 15th, and 30th bur use, simulating clinical procedures. Unpolished surfaces served as a control group. Surfaces were imaged with noncontact optical profilometry (OP) and atomic force microscopy (AFM) to measure average roughness values (Ra). Polishing burs were optically examined for wear. Scanning electron microscopy (SEM) was performed on burs and zirconia surfaces. One-way ANOVA with post hoc Tukey HSD (honest significant difference) tests (α=0.05) were used for statistical analyses. Results: AFM and OP Ra values of all polished surfaces were significantly lower than those of the unpolished control. Different polishing forces and bur reuse showed no significant differences in AFM Ra. However, significant differences in OP Ra were found due to differing application forces and bur reuse between the first and subsequent uses. SEM and optical micrographs revealed notable bur wear, increasing with increasing reuse. SEM and AFM micrographs clearly showed polished, periodic zirconia surfaces. Nanoscale topography, as analyzed with kurtosis and average groove depth, was found dependent on the specific polishing bur type. Conclusions: These in vitro results suggest changes in OP Ra due to bur reuse and polishing application force. Within the parameters of this study, the resultant topography of zirconia polishing is force-dependent and the reuse of coarse polishing burs is possible without statistically significant differences in Ra values after initial use. Nanoscale and microscale topography were shown to depend on specific polishing bur type.


2019 ◽  
Vol 17 (1) ◽  
pp. 228080001880710 ◽  
Author(s):  
İbrahim Duran ◽  
Necati Kaleli ◽  
Çağrı Ural ◽  
İdris Kavut

Background: This in vitro study aimed to evaluate the amount of polymerizing light passing through hybrid ceramic specimens in different shades and thicknesses. Methods: Rectangular-shaped feldspathic ceramic computer aided design and computer aided manufacturing (CAD-CAM) blocks and translucent and high translucent polymer infiltrated hybrid ceramic CAD-CAM blocks in four different shades (1M1, 1M2, 2M2, and 3M2) were sectioned in four different thicknesses (0.8, 1.5, 2, and 3 mm), and a total of 48 groups ( n = 10) were obtained. Feldspathic ceramic specimens served as the control group. The light transmission of each ceramic specimen was measured three times by using a light-emitting diode and a radiometer. Data were statistically analyzed by using univariate analysis of variance (ANOVA) followed by one-way ANOVA, Tukey honest significant difference, and Tamhane T2 tests (α = 0.05). Results: Translucent polymer infiltrated hybrid ceramic specimens exhibited significantly ( p < 0.001) lower light transmission values than high translucent polymer infiltrated hybrid ceramic and feldspathic ceramic specimens, whereas feldspathic ceramic specimens exhibited significantly ( p < 0.001) higher light transmission than translucent and high translucent polymer infiltrated hybrid ceramic specimens. The amount of light transmission significantly ( p < 0.05) decreased when the shade value decreased and the thickness increased. Conclusions: Polymer infiltrated hybrid ceramic specimens showed lower light transmission values than feldspathic ceramic specimens, and the amount of light transmission was affected by the ceramic shade and thickness.


2019 ◽  
Vol 44 (1) ◽  
pp. 88-95 ◽  
Author(s):  
G Daryakenari ◽  
H Alaghehmand ◽  
A Bijani

SUMMARY Objective: Computer aided design-computer aided machining (CAD-CAM) ceramic crowns are replacing ceramo-metal ones due to newly developed mechanical properties and esthetics. To obtain knowledge about their interactions due to polishing and occlusal contacts with the opposing dental enamel specimen, including surface roughness and wear, the three-body wear simulation was investigated. Methods and Materials: The surface roughness (RA) and wear rate (mm) of four CAD-CAM blocks with different compositions including Vita Mark II, e.max, Suprinity, and Enamic, after two surface treatments of glazing and polishing, and their opposing enamel specimens, were investigated using a mastication simulator and atomic force microscope. Results: The roughness of all ceramic and to a greater extent enamel samples, with the exception of enamel opposing polished Enamic samples, was decreased after wear. No significant difference in wear was evident for the ceramic samples between the glazed and polished treatments. Lower wear rates were recorded only for polished Vita Mark II and polished Enamic in comparison to the glazed ones. Conclusion: The newly developed polishing systems for CAD-CAM ceramics can be good alternatives to reglazing, because the roughness and wear rate of both the ceramic and the opposing enamel will either not change or decrease.


Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 981 ◽  
Author(s):  
Konstantinos Papadopoulos ◽  
Kimon Pahinis ◽  
Kyriaki Saltidou ◽  
Dimitrios Dionysopoulos ◽  
Effrosyni Tsitrou

Computer-aided design/computer-aided manufacturing (CAD/CAM) technology was developed to ensure the sufficient strength of tooth restorations, to improve esthetic restorations with a natural appearance and to make the techniques easier, faster and more accurate. In the view of the limited research on the surface treatments of the CAD/CAM materials and the need to evaluate the ideal surface characteristics of a material to achieve the best adhesion to tooth tissues, this study aimed to investigate the surface roughness and morphology of four different CAD/CAM materials using four different surface treatments. The CAD/CAM materials used in this study were three composites (Shofu Block HC, Lava Ultimate and Brilliant Crios) and a hybrid ceramic (Enamic). The surface of the specimens of each material received one of the following treatments: no surface treatment, sandblasting with 29 μm Al2O3 particles, 9% hydrofluoric acid etching and silane application, and the tribochemical method using CoJet System. Surface roughness was evaluated using optical profilometry, and surface morphology was observed by means of scanning electron microscopy. All surface treatments resulted in higher surface roughness values compared to the control group. Different treatments affected the surface properties of the materials, presumably due to discrepancies in their composition and structure.


2019 ◽  
Vol 45 (4) ◽  
pp. 407-415 ◽  
Author(s):  
P Nassary Zadeh ◽  
N Lümkemann ◽  
M Eichberger ◽  
B Stawarczyk ◽  
M Kollmuss

Clinical Relevance As temporary materials are often used in prosthetic dentistry, there is need to investigate their behavior in the oral environment. Parameters such as surface roughness and surface free energy correlate to the level of plaque adhesion, which can impact gingival health. SUMMARY Objective: To test computer-aided design/computer-aided manufacturing (CAD/CAM)-fabricated and conventionally processed polymer-based temporary materials in terms of radiopacity (RO), surface free energy (SFE), surface roughness (SR), and plaque accumulation (PA). Methods and Materials: Six temporary materials (n=10/n=10) were tested, including three CAD/CAM-fabricated (CC) materials—Art Bloc Temp (CC-ABT), Telio CAD (CC-TC), and VITA CAD Temp (CC-VCT)—and three conventionally processed (cp) materials: Integrity Multi Cure (cp-IMC), Luxatemp Automix Plus (cp-LAP), and Protemp 4 (cp-PT4). Zirconia acted as the control group (CG, n=10). RO was evaluated according to DIN EN ISO 13116. SFE was investigated using contact angle measurements. SR was measured using a profilometer. The PA tests were performed using three microorganisms: Streptococcus mutans, Actinomyces naeslundii, and Veillonella parvula. Data were analyzed using Kolmogorov-Smirnov, Kruskal-Wallis, Mann-Whitney U-, Dunn-Bonferroni, Wilcoxon, Levene, and Pearson tests and one-way analysis of variance with post hoc Scheffé test (α=0.05). Results: No radiopacity was observed for any CC material or cp-PT4. CG showed the highest RO, while no differences between cp-IMC and cp-LAP were found. CG showed lower SFE compared to all polymer temporary materials, except in the case of CC-TC. cp-LAP and cp-IMC presented higher SFE than did CC-TC and CG. CC-ABT presented lower initial SR values compared to cp-PT4 and cp-LAP. For cp-LAP, a higher initial SR was measured than for all CAD/CAM materials and cp-IMC. All specimens showed a certain amount of PA after the incubation period. A naeslundii and V parvula resulted in comparable PA values, whereas the values for S mutans were lower by one log level. CAD/CAM materials showed superior results for SR, SFE, and PA, whereas all materials lacked RO.


2013 ◽  
Vol 39 (4) ◽  
pp. 417-424 ◽  
Author(s):  
Hanaa Hassan Zaghloul ◽  
Jihan Farouk Younis

This study evaluated the effect of fabrication techniques and cyclic loading on the vertical marginal fit of implant-supported fixed partial denture (FPD) frameworks. Thirty implant-supported 3-unit FPD frameworks were fabricated on a model system, divided into 3 equal groups (n = 10). The first group (control) was constructed from base metal alloy; the other 2 test groups were constructed from all-ceramic zirconia using a computer-aided design/computer-aided manufacturing (CAD/CAM) Cerec 3 system and a copy milling (Zirkonzahn) system. A cyclic load of 200 N was applied to each framework for up to 50,000 cycles. Linear measurements were made in micrometers of the vertical gap between the framework and the implant-supported abutment at 16 predetermined points before and after cyclic loading. The frameworks were viewed using scanning electron microscopy to inspect any fractographic features. One-way analysis of variance was performed to compare the marginal discrepancy values of the control and the 2 test groups and for each group; a t test was applied to determine whether significant changes in the fit were observed after cyclic loading (α = 0.05). The CAD/CAM group showed significantly higher marginal gap mean values (80.58 μm) than the Zirkonzahn and control groups (50.33 μm and 42.27 μm, respectively) with no significant difference. After cyclic loading, the CAD/CAM group recorded the highest marginal gap mean value (91.50 ± 4.260 μm) followed by control group (72.00 ± 2.795 μm); the Zirkonzahn group recorded the lowest marginal gap (65.37 ± 6.138 μm). Cyclic loading significantly increased the marginal gap mean values in the control group only. A marginal chip was observed in one of the CAD/CAM ceramic frameworks. Within the limitations of this study, the fabrication technique influenced the marginal fit of the implant-supported 3-unit FPD frameworks. Cyclic loading failed to change the fit of all-ceramic zirconia frameworks, whereas significant changes were found in the metal frameworks.


2021 ◽  
Vol 19 ◽  
pp. 228080002110588
Author(s):  
Sarah S. Al-Angari ◽  
Shahad Meaigel ◽  
Nouf Almayouf ◽  
Shahad Quwayhis ◽  
Abdulelah Aldahash ◽  
...  

Objectives: To investigate the effects of a coffee beverage and two whitening systems on the surface roughness and gloss of glazed Lithium Disilicate Glass-Ceramics (LDGC) for computer-aided design/computer-aided manufacturing (CAD/CAM) systems. Methods: Sixty-eight LDGC disks (12 × 10 × 2 mm) were prepared from blocks of CAD/CAM systems (IPS e.max CAD ceramic). Baseline measurements for surface roughness (Ra) and gloss (GU) were taken using a 3-D optical profilometer and a glossmeter, respectively; then specimens were randomized into four groups ( n = 17). All specimens were immersed in a coffee solution (24 h × 12 days) then subjected to two whitening systems. G1-negative control (kept moist × 7 days); G2-positive control (brushed with distilled water, 200 g/load, 2 min twice daily × 7 days); G3-whitening toothpaste (Colgate optic white; relative dentin abrasivity (RDA) = 100, 200 g/load, 2 min twice daily × 7 days); and G4-simulated at-home bleaching protocol (Opalescence,15% carbamide peroxide (CP), 6 h/day × 7 days). The study outcomes were measured at baseline and after the treatments. Data were analyzed using paired T-test and one-way ANOVA (α = 0.05). Results: The mean surface roughness significantly increased ( p ⩽ 0.002) for all groups after the designated treatment protocols. Among groups, the mean surface roughness of G2 and G3 were significantly higher ( p ⩽ 0.001) (Ra: 0.51 and 0.57 μm, respectively) compared to the control group (Ra: 0.23 μm), and were not significantly different from G4 (Ra: 0.46 μm). Surface gloss decreased with no significant change within or among groups after treatment. Conclusion: All glazed LDGC had a significant increase in surface roughness after being subjected to simulated 1 year of coffee drinking and whitening systems (15% CP and whitening toothpaste), and the greatest change was associated with brushing (simulating 8 months). However, coffee beverages and whitening systems had no significant effect on the surface gloss.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lujain I. Aldosari ◽  
Abdulkhaliq A. Alshadidi ◽  
Amit Porwal ◽  
Nasser M. Al Ahmari ◽  
Mohammed M. Al Moaleem ◽  
...  

Abstract Background The purpose of this study evaluates and compares the effect of surface roughness (Ra) and color stability on computer-aided design/computer-aided manufacturing (CAD/CAM) hybrid resin (Vita Enamic), feldspathic (Vitablocs® Mark II), and lithium disilicate Zirconia (Vita Suprinity) glazed or polished ceramics immersed in hot Arabic Qahwa and cold coffee. Methods A total of 96 standardized samples were prepared from CAD/CAM restorative materials. Half of the samples were polished as per the manufacturer’s instructions using a porcelain polishing kit, and the other half were glazed. Samples were distributed and immersed in hot Arabian Qahwa and cold coffee followed by thermocycling. Ra measurements and color changes were conducted before and after immersion. SEM images were captured from each type of glazed or polished ceramic. One-way ANOVA paired Student’s t-test, and Bonferroni test were conducted to detect significant difference between the groups. P > 0.05 was a significant level. Results Of all the tested samples, Ra increased without any significant difference; however, mean color changes (ΔE*) showed significant differences. An increase in Ra was noted for all the glazed and polished samples after immersion and thermocycling. However, differences were significant only in VM II. In addition, ΔE* was significant only in Vita Suprinity (VS) samples. For immersion groups, significant Ra changes were noticed in glazed samples, only in Vita Enamic (VE) with no ΔE*. In polished samples, mean Ra changes were observed in VM II and VS samples. Significant differences were also noticed in polished VE and VS subgroups of ΔE*. Conclusions Ra affects all the tested samples, providing higher values on the polished specimens. The ΔE* caused by hot Arabic Qahwa and cold coffee on glazed or polished CAD/CAM restorative materials were clinically acceptable.


Author(s):  
Bilge ERSÖZ ◽  
Serpil Karaoğlanoğlu ◽  
Elif Aybala Oktay ◽  
Numan Aydın

Purpose: This study investigated discoloration and surface roughness (Ra) of resin-based computer aided design (CAD)/computer aided manufacturing (CAM) blocks and direct and indirect resin composites after staining with coffee. Materials & Methods: Using a Teflon mold, 60 disc shaped specimens (8×2 mm2) were fabricated from direct (Estelite Asteria and GrandioSO) and indirect (Gradia Plus) resin composites, and 30 resin CAD/CAM specimens (12×14×2 mm3) were prepared from resin composite CAD/CAM blocks (Vita Enamic, Brilliant Crios, and Cerasmart) (n=10). A contact type profilometer was used to determine the Ra of all 60 polished samples. All specimens were thermocycled between 5 and 55°C for 3000 cycles, and immersed in coffee solution (37°C) for 1 and 7 days. A spectrophotometer was used to determine the color change (∆E00) with the CIEDE2000 formula after the specimens were re-polished. One-way analysis of variance (ANOVA) and Tukey multiple comparison test was performed to analyze the data (p<0.05). Results: The lowest degree of discoloration among the materials tested was found in Vita Enamic resin CAD/CAM block (p<0.001), whereas the highest degree of discoloration was found in the Gradia Plus indirect composite (p<0.001). There was no significant difference was seen between the initial surface roughness values (Ra) among the groups (p=0.249). No significant improvement was observed in the color of the groups except for the Cerasmart resin block after after polishing. Conclusion: Direct resin composites have a higher discoloration potential over resin-based CAD/CAM blocks, whereas they are less prone to discoloration than indirect resin composites


2022 ◽  
Author(s):  
eaeldwakhly not provided

This study was conducted to assess the surface characteristics in terms of roughness of two CAD/CAM (Computer-Aided-Design/Computer-Aided Manufacturing)restorative material spre and post chewing simulation exposure. Methods: Specimens were prepared from two CAD/CAM ceramic materials: Cerec Blocs C and IPS e-max ZirCAD. A total of 10 disks were prepared for each study group. 3D optical noncontact surface profiler was used to test the surface roughness (ContourGT, Bruker, Campbell, CA, USA). A silicone mold was used to fix the individual samples using a self-curing resin. Surface roughness (SR) was examined pre and post exposure to chewing simulation. 480,000 simulated chewing cycles were conducted to mimic roughly two years of intraoral clinical service. The results data was first tested for normality and equal variance (Levene’s test >0.05) then examined with paired and independent sample t-test at a significance level of (p < 0.05). Results:The two CAD-CAM materials tested exhibited increased surface roughness from baseline. The highest mean surface roughness was observed in Cerec blocs C group after chewing simulation (2.34 µm± 0.62 µm). Whereas the lowest surface roughness was observed in IPS e.max ZirCAD group before chewing simulation (0.42 µm± 0.16 µm). Both study groups exhibited significantly different surface roughness values (p< 0.05). There was a statistically higher surface roughness values after the chewing simulation in Cerec blocs C when compared to IPS e.max ZirCAD groups (p = 0.000).Conclusion:Even though both tested CAD/CAM materials differ in recorded surface roughness values, results were within clinically accepted values.


Sign in / Sign up

Export Citation Format

Share Document