scholarly journals Necesidades hídricas de estevia calculadas con el coeficiente del cultivo

2017 ◽  
Vol 28 (2) ◽  
pp. 509
Author(s):  
Martha Constanza Daza Torres ◽  
Hugo Stiven Meneses Carvajal ◽  
Aldemar Reyes Trujillo ◽  
Norberto Urrutia Cobo

This study aimed to determine the crop coefficient (Kc) curve for stevia (Stevia rebaudiana Bertoni) in Candelaria, Valle del Cauca, Colombia. The experiment was conducted during the first half of 2015. In a plot planted with stevia, were located three drainage lysimeters arranged randomly and a portable weather station to determine climatic variables necessary for calculating an evapotranspiration reference (ETo), using the Penman Monteith equation. Soil eld capacity moisture was determined and regular monitoring of both, soil moisture and drainage water depth were performed. Irrigation was applied using an exhaustion coefficient of 10% to bring it back to field capacity moisture. Statistical analyzes were performed and Kc was calculated from the ratio of crop evapotranspiration (ETc) to ETo, for each plant in phenological phase. With condidence of 95% Kc for stevia were: growth stage (54 days after transplantation, ddt) 0.86 ± 0.12, mature stage (55-72 ddt) 1.24 ± 0.10 and senescence stage (72-96 ddt) 0.85 ± 0.14. Water consumption of Stevia rebaudiana B., was 4753 m3/ha during its growing cycle of 96 days after transplantation. 

2017 ◽  
Vol 37 (3) ◽  
pp. 08-16 ◽  
Author(s):  
Martha Constanza Daza-Torres ◽  
Paulo César Arias-Prado ◽  
Aldemar Reyes-Trujillo ◽  
Norberto Urrutia-Cobo

The determination of the crop coefficient (Kc) throughout the phenological stages is important for the calculation of water requirements of plants. This study determined the Kc curve for Basil (Ocimum basilicum L.) in Candelaria, Valle del Cauca, and evaluated this Kc in greenhouse conditions. Three drainage lysimeters and a portable meteorological station were used to determine the reference evapotranspiration (ETo), which were set up randomly in an experimental plot. The field capacity (FC) moisture content was determined, and the soil moisture and drainage depth were periodically monitored. Daily water balance calculations were conducted to determine the crop’s water needs (ETc), and the Kc was calculated based on the quotient between ETc and ETo by performing statistical regression analysis. In the second experiment, in a completely randomized bifactorial design, four treatments were established in Cali (Valle). These treatments were amount of water necessary to maintain the soil moisture at FC and amount of water calculated with the Kc (72 % FC), both treatments with and without fertilizers application. The results showed that the Kc values for basil are: growth stage, 0,45 ± 0,02 (25 days after transplant, dat); maturity stage, 0,59 ± 0,02 (26 – 50 dat); and senescence stage, 0,42 ± 0,03 (51 – 71 dat). In greenhouse conditions, dry mass percentage, plant height, soil pH and electrical conductivity were similar for both water regimens. The reduction on water with Kc increased the nitrogen foliar but the water use efficient decreased.


2021 ◽  
Vol 12 (1) ◽  
pp. 117-125
Author(s):  
GA Ali ◽  
TA Ademiju ◽  
JA Osunbitan

This study was carried out to determine the crop water and irrigation requirement of some selected crops in southwestern Nigeria. The crops are cucumber, water melon, maize, groundnut, eggplant and tomato. Irrigation requirement and crop coefficient for each crops were determined from the interrelationships of the evapotranspiration, soil type, bulk density, field capacity and the effective root zone of the crops at the selected locations using CROPWAT for windows version 8. Soil parameters used for analysis were determined from laboratory experiment. The crop evapotranspiration and water requirement for cucumber varied from 2.52 to 7.21mm/day and 17 to 73.2mm/dec, respectively, for maize from 1.36 to 6.35mm/day and 5.1 to 63.5mm/dec respectively, for watermelon varied from 2.59 to 6.67mm/day and 25.9 to 73.3mm/dec respectively, for eggplant varied from 1.92 to 6.35 mm/day and 15.9 to 64.4mm/dec respectively. The irrigation requirement for water melon and cucumber recorded the highest value of 461.6 and 497.4mm/dec respectively, an indication that the two crops require more water for physiological activities. The reduction in the values of crop coefficient was observed during the study which could be attributed to the reduction in evapotranspiration at the late stage of growth. The findings also showed that known quantities of irrigation water could be used in producing crops optimally.


Author(s):  
Jesiele S. Divincula ◽  
Cinara B. da Silva ◽  
Marcio A. L. dos Santos ◽  
Daniella P. dos Santos ◽  
Luan W. dos Santos

ABSTRACT Prickly pear cultivation has played an important role in the Brazilian livestock farming, being used as forage for animals in the Northeast region, especially during the drying season, because it is an excellent source of water. Thus, the objective of this study was to estimate the crop coefficient and water requirement of prickly pear in the Agreste region of Alagoas state, Brazil. Prickly pear crop evapotranspiration (ETc) was determined using five drainage lysimeters, made of polyethylene with dimensions of 0.35 x 0.40 m (side and depth). Four soil layers were separated and put into the lysimeters in the opposite sequence, in order to maintain it as close as possible to the initial soil structure. The reference evapotranspiration (ETo) was estimated by the Penman-Monteith, Hargreaves-Samani and FAO-Radiation methods, using climatic data from the meteorological station of the Instituto Nacional de Meteorologia (INMET) in the city of Arapiraca, AL, Brazil. Crop coefficient (kc) was calculated by the ratio between ETc and ETo. The average kc obtained was 0.72, 0.84 and 0.48 for the Penman-Monteith, Hargreaves-Samani and FAO-Radiation methods, respectively. Keeping the soil under field capacity during the experimental period, the total crop evapotranspiration was 637.84 mm, with daily value equal to 4.22 mm d-1.


Agronomy ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 756 ◽  
Author(s):  
Alataway ◽  
Al-Ghobari ◽  
Mohammad ◽  
Dewidar

The determination of the water requirements and crop coefficient (Kc) of agricultural crops helps to create an appropriate irrigation schedule, and with the effective management of irrigation water. The aim of this research was to estimate the water requirement, Kc, and water-use efficiency (WUE) of potato using non-weighing-type lysimeters in four regions of the Kingdom of Saudi Arabia (Qassiem, Riyadh, Al-Jouf, and Eastern). Our results clearly show that the accumulated values of the measured crop evapotranspiration of potato derived from the lysimeters were 573, 554, 592, and 570 mm, while the accumulated values of the predicted crop evapotranspiration from Penman-Monteith equation based on FAO (Food and Agriculture Organization) were 651, 632, 672, and 647 mm for the Qassiem, Riyadh, Al-Jouf, and Eastern regions, respectively. The Kc values of potato obtained from the lysimeters were Kc initial (0.58, 0.54, 0.50, and 0.52), Kc middle (1.02, 1.05, 1.13, and 1.10), and Kc end (0.73, 0.74, 0.74, and 0.75) for the Qassiem, Riyadh, Al-Jouf, and Eastern regions, respectively. Based on the amount of water used and the yield achieved, the highest WUE (3.6 kg m−3) was observed in the Riyadh region, while the lowest WUE (1.5 kg m−3) was observed in the Al-Jouf region.


2003 ◽  
Vol 60 (3) ◽  
pp. 595-599 ◽  
Author(s):  
Diniz Fronza ◽  
Marcos Vinícius Folegatti

The knowledge of water requirement of crops in the different growing phases elicits higher crop yield and rational use of water resource. The aim of this work was to estimate the water consumption of stevia using two constant watertable microlysimeters. The research was conducted in San Piero a Grado, Pisa, Italy. The data were collected daily from June, 1st, to October, 22th, 2000. Reference evapotranspiration was determined by the Penman-Monteith-FAO method, in the same period. Microlysimeters watertables level were maintained at the 35 cm depth. Crop evapotranspiration for the total cicle (80 days) was 464 mm. For the most water consuming phase, crop average evapotranspiration was 5.44 mm day-1. The crop coefficient values were 1.45 for the first 25 days, 1.14 for the next period (26 to 50 days), and 1.16 for the latest period (51 to 80 days). The stevia leaf yield of the microlysimeters was 4.369 kg ha-1 and their steviosideo content 6.49%.


Author(s):  
Guilherme Bariviera ◽  
Rivanildo Dallacort ◽  
Paulo S. L. de Freitas ◽  
Joao D. Barbieri ◽  
Diego F. Daniel

ABSTRACT The objective of this study was to determine the dual crop coefficient of an early-cycle soybean cultivar for the city of Tangará da Serra, MT, Brazil, using high-precision lysimeters. The method used was the dual crop coefficient (dual Kc) of FAO Bulletin 56, constitued by soil evaporation coefficient (Ke), determined by microlysimeters, and by basal crop coefficient (Kcb), determined by weighing lysimeters. Reference evapotranspiration (ETo) was calculated using the Penman-Monteith equation. Soybean sowing and harvesting were performed in the 2015/16 season with spacing of 0.45 m between rows. The reference evapotranspiration (ETo) estimated for the cultivation period was 267.06 mm; the crop evapotranspiration was 323.61 mm throughout its cycle. The Kcb values determined by lysimeters for soybean cultivation were 0.47, 1.15 and 0.89 for the initial, intermediate and final stages, respectively; Ke values at the initial, intermediate and final stages were 0.94, 0.14 and 0.44, respectively.


2019 ◽  
Vol 37 (4) ◽  
pp. 373-378
Author(s):  
Izabela P Martins ◽  
Rogério T de Faria ◽  
Luiz F Palaretti ◽  
Miquéias G dos Santos ◽  
João Alberto Fischer Filho

ABSTRACT The basil (Ocimum basilicum) crop is of great importance for trading as fresh or dried condiment for human consumption and essential oil for pharmaceutical and cosmetic industries. Water excesses and deficits can affect biomass production of plants, making it necessary to use the correct amount of water for each crop. Considering that determinations of water consumption and cultivation coefficients for medicinal plants are scarce, the aim of this study was determining evapotranspiration and crop coefficients of basil using lysimeters. The crop evapotranspiration was determined by weighing lysimeters for the replacements of 100, 75 and 50% of the maximum daily evapotranspiration. The reference crop evapotranspiration was estimated by the Penman-Monteith equation. Crop evapotranspiration for the 49 day cycle was 471, 352 and 236 mm, and daily rates ranged from 4.8 to 9.4; 4 to 8.1 and 3.7 to 7.4 mm/day, for the replacements of 100, 75 and 50% of the maximum daily evapotranspiration. Crop coefficients varied from 1.5 to 2.8 and were related to the days after transplanting, leaf area index, cover ratio and cumulative degrees-day.


Planta Medica ◽  
2013 ◽  
Vol 79 (13) ◽  
Author(s):  
LF Ceole ◽  
SS Lopes ◽  
AJ Oliveira ◽  
BP Dias Filho ◽  
CV Nakamura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document