Improving Net Pay Estimation by Identification of Producing Oil Water Contact POWC in Heterogenous Carbonates

Author(s):  
Aman Arora ◽  
Steven Henderson ◽  
George B. Asquith
Keyword(s):  
Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1593 ◽  
Author(s):  
Hajo Yagoub ◽  
Liping Zhu ◽  
Mahmoud H. M. A. Shibraen ◽  
Ali A. Altam ◽  
Dafaalla M. D. Babiker ◽  
...  

The complex aerogel generated from nano-polysaccharides, chitin nanocrystals (ChiNC) and TEMPO-oxidized cellulose nanofibers (TCNF), and its derivative cationic guar gum (CGG) is successfully prepared via a facile freeze-drying method with glutaraldehyde (GA) as cross-linkers. The complexation of ChiNC, TCNF, and CGG is shown to be helpful in creating a porous structure in the three-dimensional aerogel, which creates within the aerogel with large pore volume and excellent compressive properties. The ChiNC/TCNF/CGG aerogel is then modified with methyltrichlorosilane (MTCS) to obtain superhydrophobicity/superoleophilicity and used for oil–water separation. The successful modification is demonstrated through FTIR, XPS, and surface wettability studies. A water contact angle of 155° on the aerogel surface and 150° on the surface of the inside part of aerogel are obtained for the MTCS-modified ChiNC/TCNF/CGG aerogel, resulting in its effective absorption of corn oil and organic solvents (toluene, n-hexane, and trichloromethane) from both beneath and at the surface of water with excellent absorption capacity (i.e., 21.9 g/g for trichloromethane). More importantly, the modified aerogel can be used to continuously separate oil from water with the assistance of a vacuum setup and maintains a high absorption capacity after being used for 10 cycles. The as-prepared superhydrophobic/superoleophilic ChiNC/TCNF/CGG aerogel can be used as a promising absorbent material for the removal of oil from aqueous media.


2000 ◽  
Vol 3 (05) ◽  
pp. 401-407 ◽  
Author(s):  
N. Nishikiori ◽  
Y. Hayashida

Summary This paper describes the multidisciplinary approach taken to investigate and model complex water influx into a water-driven sandstone reservoir, taking into account vertical water flux from the lower sand as a suspected supplemental source. The Khafji oil field is located offshore in the Arabian Gulf. Two Middle Cretaceous sandstone reservoirs are investigated to understand water movement during production. Both reservoirs are supported by a huge aquifer and had the same original oil-water contact. The reservoirs are separated by a thick and continuous shale so that the upper sand is categorized as edge water drive and the lower sand as bottomwater drive. Water production was observed at the central up structure wells of the upper sand much earlier than expected. This makes the modeling of water influx complicated because it is difficult to explain this phenomenon only by edge water influx. In this study, a technical study was performed to investigate water influx into the upper sand. A comprehensive review of pressure and production history indicated anomalous higher-pressure areas in the upper sand. Moreover, anomalous temperature profiles were observed in some wells in the same area. At the same time, watered zones were trailed through thermal-neutron decay time(TDT) where a thick water column was observed in the central area of the reservoir. In addition, a three-dimensional (3D) seismic survey has been conducted recently, revealing faults passing through the two reservoirs. Therefore, as a result of data review and subsequent investigation, conductive faults from the lower sand were suspected as supplemental fluid conduits. A pressure transient test was then designed and implemented, which suggested possible leakage from the nearby fault. Interference of the two reservoirs and an estimate of supplemental volume of water influx was made by material balance. Finally, an improved full-scale numerical reservoir model was constructed to model complex water movement, which includes suspected supplemental water from the lower sand. Employment of two kinds of water influx—one a conventional edge water and another a supplemental water invasion from the aquifer of the lowers and through conductive faults—achieved a water breakthrough match. Introduction The Khafji oil field is located in the Arabian Gulf about 40 km offshore Al-Khafji as shown by Fig. 1. The length and width of the field are about 20 and 8 km, respectively. The upper sandstone reservoir, the subject of this study, lies at a depth of about 5,000 ft subsea and was discovered in1960. The average thickness of the reservoir is about 190 ft. The reservoir is of Middle Cretaceous geologic age. Underlying the upper sandstone reservoir is another sandstone reservoir at a depth of about 5,400 ft. It has an average gross thickness of about 650 ft and is separated from the upper sand by a thick shale bed of about 200 ft. Both reservoirs had the same original oil-water contact level as shown by the subsurface reservoir profile in Fig. 2. Both sandstone reservoirs are categorized as strong waterdrive that can maintain reservoir pressure well above the bubblepoint. On the other hand, water production cannot be avoided because of an unfavorable water-to-oil mobility ratio of 2 to 4 and high formation permeability in conjunction with a strong waterdrive mechanism. In a typical edge water drive reservoir, water production normally begins from the peripheral wells located near the oil-water contact and water encroaches as oil production proceeds. However, some production wells located in the central up structure area of the upper sand started to produce formation water before the wells located in the flank area near the water level. In 1996, we started an integrated geological and reservoir study to maximize oil recovery, to enhance reservoir management, and to optimize the production scheme for both sandstone reservoirs. This paper describes a part of the integrated study, which focused on the modeling of water movement in the upper sand. The contents of the study described in this paper are outlined as:diagnosis and description of the reservoir by fully utilizing available data, which include comprehensive review of production history, TDT logs, formation temperatures, pressures, and 3D seismic; introduction of fluid conductive faults as a suspected supplemental water source in the central upstructure area; design and implementation of a pressure transient test to investigate communication between the reservoirs and conductivity of faults; running of material balance for the two reservoirs simultaneously to assess their interference; and construction of an improved full-scale reservoir simulation model and precise modeling of complex water movement. Brief Geological Description of the Upper Sand The structure of the upper sand is anticline with the major axis running northeast to southwest. The structure dip is gentle (Fig. 3) at about3° on the northwestern flank and 2° on the southeastern flank. The upper sand is composed mainly of sandstone-dominated sandstone and shale sequences. It is interpreted that the depositional environment is complex, consisting of shoreface and tide-influenced fluvial channels.


2021 ◽  
Author(s):  
Nasser Faisal Al-Khalifa ◽  
Mohammed Farouk Hassan ◽  
Deepak Joshi ◽  
Asheshwar Tiwary ◽  
Ihsan Taufik Pasaribu ◽  
...  

Abstract The Umm Gudair (UG) Field is a carbonate reservoir of West Kuwait with more than 57 years of production history. The average water cut of the field reached closed to 60 percent due to a long history of production and regulating drawdown in a different part of the field, consequentially undulating the current oil/water contact (COWC). As a result, there is high uncertainty of the current oil/water contact (COWC) that impacts the drilling strategy in the field. The typical approach used to develop the field in the lower part of carbonate is to drill deviated wells to original oil/water contact (OOWC) to know the saturation profile and later cement back up to above the high-water saturation zone and then perforate with standoff. This method has not shown encouraging results, and a high water cut presence remains. An innovative solution is required with a technology that can give a proactive approach while drilling to indicate approaching current oil/water contact and geo-stop drilling to give optimal standoff between the bit and the detected water contact (COWC). Recent development of electromagnetic (EM) look-ahead resistivity technology was considered and first implemented in the Umm Gudair (UG) Field. It is an electromagnetic-based signal that can detect the resistivity features ahead of the bit while drilling and enables proactive decisions to reduce drilling and geological or reservoir risks related to the well placement challenges.


2021 ◽  
Vol 2 (1) ◽  
pp. 336-344
Author(s):  
Anna S. Astrakova ◽  
Elena V. Konobriy ◽  
Dmitry Yu. Kushnir ◽  
Nikolay N. Velker ◽  
Gleb V. Dyatlov

Non-structural traps and reservoir flanks are characterized by angular unconformities. Angular unconformity between dipping formation and sub-horizontal oil-water contact is common in the North Sea fields. This paper presents an approach to real-time inversion of LWD resistivity data for the scenario with angular unconformity. The approach utilizes artificial neural networks (ANNs) for calculating the tool responses in parametric surface-based 2D resistivity models. We propose a parametric model with two non-parallel boundaries suitable for scenarios with angular unconformity and pinch-out. Training of ANNs for this parametric model is performed using a database containing samples with the model parameters and corresponding tool responses. ANNs are the kernel of 2D inversion based on the Levenberg-Marquardt optimization method. To demonstrate applicability of our approach and compare with the results of 1D inversion, we analyze Extra Deep Azimuthal Resistivity tool responses in a 2D synthetic model. It is shown that 1D inversion determines either the position of the oil-water contact or dipping layers structure. At the same time, 2D inversion makes it possible to correctly reconstruct the positions of non-parallel boundaries. Performance of 2D inversion based on ANNs is suitable for real-time applications.


2020 ◽  
Vol 10 (2) ◽  
pp. 95-113
Author(s):  
Wisam I. Al-Rubaye ◽  
Dhiaa S. Ghanem ◽  
Hussein Mohammed Kh ◽  
Hayder Abdulzahra ◽  
Ali M. Saleem ◽  
...  

In petroleum industry, an accurate description and estimation of the Oil-Water Contact(OWC) is very important in quantifying the resources (i.e. original oil in place (OIIP)), andoptimizing production techniques, rates and overall management of the reservoir. Thus,OWC accurate estimation is crucial step for optimum reservoir characterization andexploration. This paper presents a comparison of three different methods (i.e. open holewell logging, MDT test and capillary pressure drainage data) to determine the oil watercontact of a carbonate reservoir (Main Mishrif) in an Iraqi oil field "BG”. A total of threewells from "BG" oil field were evaluated by using interactive petrophysics software "IPv3.6". The results show that using the well logging interpretations leads to predict OWCdepth of -3881 mssl. However, it shows variance in the estimated depth (WELL X; -3939,WELL Y; -3844, WELL Z; -3860) mssl, which is considered as an acceptable variationrange due to the fact that OWC height level in reality is not constant and its elevation isusually changed laterally due to the complicated heterogeneity nature of the reservoirs.Furthermore, the results indicate that the MDT test can predict a depth of OWC at -3889mssl, while the capillary drainage data results in a OWC depth of -3879 mssl. The properMDT data and SCAL data are necessary to reduce the uncertainty in the estimationprocess. Accordingly, the best approach for estimating OWC is the combination of MDTand capillary pressure due to the field data obtained are more reliable than open hole welllogs with many measurement uncertainties due to the fact of frequent borehole conditions.


Soft Matter ◽  
2021 ◽  
Author(s):  
Jixi Zhang ◽  
Ligui Zhang ◽  
Xiao Gong

In this work, we prepare a PDMS-SiO2-PDA@fabric with high water contact angle (WCA=155o). Combining dopamine self-polymerization and sol-gel method, SiO2 is in situ grown on a PDA-modified fabric surface to...


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Xinzuo Fang ◽  
Yufan Liu ◽  
Sheng Lei ◽  
Junfei Ou

Water pollution caused by oil leakage and oily wastewater has become a serious environmental problem. Therefore, it is important to develop an efficient material to remove oil from water. Given the cost and efficiency, the membrane with superhydrophobicity is the most used material for the separation of oil/water mixtures. However, many works have been done through modification with a fluorinated reagent, causing high cost and damage to the environment. In this work, a simple and fast two-step method is employed to achieve a superhydrophobic hair-like nanowire membrane. Through the alkali-assisted oxidation process and modification with nonfluorinated low surface energy chemical, the so-obtained membrane (denoted as SHM), with the water contact angle of about 164°, exhibits excellent separation efficiency for binary mixtures of water and oils (toluene, hexane, gasoline, and so on). Meantime, this membrane also exhibits excellent durability and reusability in the long-term separation process, indicating its great potential for practical application in the future.


2003 ◽  
Vol 20 (1) ◽  
pp. 453-466 ◽  
Author(s):  
C. Gunn ◽  
J. A. MacLeod ◽  
P. Salvador ◽  
J. Tomkinson

AbstractThe MacCulloch Field lies within Block 15/24b in the UK Central North Sea and is located on the northern flank of the Witch Ground Graben. It was discovered by Conoco well 15/24b-3 in 1990.MacCulloch Field is a four-way dip closure at Top Paleocene over a deeper Mesozoic structure. The reservoir consists of Upper Balmoral Sandstones containing 32-37° API oils derived from Kimmeridge Clay Formation shales and sealed by shales belonging to the Sele Formation. The field contains recoverable reserves of 60-90 MMBOE.Reservoir quality is generally very good, with an average porosity of 28% and core permeabilities (Kh) between 200 mD and 2D. AVO anomalies and a seismic flat spot are associated with oil filled reservoir and the oil-water contact in certain areas of the field.


Sign in / Sign up

Export Citation Format

Share Document