Different Flow Behaviors of Low-Pressure and High-Pressure CO2 in Shales

Author(s):  
Bao Jia ◽  
Jyun-Syung Tsau ◽  
Reza Barati
2019 ◽  
Author(s):  
Ahmed Elatar ◽  
Kashif Nawaz ◽  
Brian Fricke ◽  
Vishaldeep Sharma

Abstract Pressure exchanger is a device used to recover energy from high pressure working fluid in systems like Reverse Osmosis water desalination. The pressure exchanger enables the high-pressure fluid to transfer portion of its energy to the low-pressure fluid by transferring the fluid pressure. This working concept can be applied to systems where there is a significant pressure variation of the working fluid along the system. Trans critical CO2 refrigeration system is a good example for significant pressure variation during the flow path. The high-pressure CO2 exiting the condenser can be recovered by the low-pressure CO2 upstream of the compressor using a pressure exchanger to increase the system overall efficiency. The proposed research is to numerically simulate a prototype pressure exchanger for trans critical CO2 refrigeration system. The focus of this study is to understand the thermo-fluid behavior of the system when CO2 is used as the working fluid. Contour plots of velocity and pressure are presented for qualitative analysis.


1988 ◽  
Vol 35 (7) ◽  
pp. 1715-1724 ◽  
Author(s):  
Takuji Hirose ◽  
Keishin Mizoguchi ◽  
Yasutoshi Naito ◽  
Yoshinori Kamiya

2020 ◽  
Author(s):  
Ruobin Dai ◽  
Hongyi Han ◽  
Tianlin Wang ◽  
Jiayi Li ◽  
Chuyang Y. Tang ◽  
...  

Commercial polymeric membranes are generally recognized to have low sustainability as membranes need to be replaced and abandoned after reaching the end of their life. At present, only techniques for downcycling end-of-life high-pressure membranes are available. For the first time, this study paves the way for upcycling fouled/end-of-life low-pressure membranes to fabricate new high-pressure membranes for water purification, forming a closed eco-loop of membrane recycling with significantly improved sustainability.


Crystals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 34
Author(s):  
Akun Liang ◽  
Robin Turnbull ◽  
Enrico Bandiello ◽  
Ibraheem Yousef ◽  
Catalin Popescu ◽  
...  

We report the first high-pressure spectroscopy study on Zn(IO3)2 using synchrotron far-infrared radiation. Spectroscopy was conducted up to pressures of 17 GPa at room temperature. Twenty-five phonons were identified below 600 cm−1 for the initial monoclinic low-pressure polymorph of Zn(IO3)2. The pressure response of the modes with wavenumbers above 150 cm−1 has been characterized, with modes exhibiting non-linear responses and frequency discontinuities that have been proposed to be related to the existence of phase transitions. Analysis of the high-pressure spectra acquired on compression indicates that Zn(IO3)2 undergoes subtle phase transitions around 3 and 8 GPa, followed by a more drastic transition around 13 GPa.


Author(s):  
Kun Li ◽  
Junjie Wang ◽  
Vladislav A. Blatov ◽  
Yutong Gong ◽  
Naoto Umezawa ◽  
...  

AbstractAlthough tin monoxide (SnO) is an interesting compound due to its p-type conductivity, a widespread application of SnO has been limited by its narrow band gap of 0.7 eV. In this work, we theoretically investigate the structural and electronic properties of several SnO phases under high pressures through employing van der Waals (vdW) functionals. Our calculations reveal that a metastable SnO (β-SnO), which possesses space group P21/c and a wide band gap of 1.9 eV, is more stable than α-SnO at pressures higher than 80 GPa. Moreover, a stable (space group P2/c) and a metastable (space group Pnma) phases of SnO appear at pressures higher than 120 GPa. Energy and topological analyses show that P2/c-SnO has a high possibility to directly transform to β-SnO at around 120 GPa. Our work also reveals that β-SnO is a necessary intermediate state between high-pressure phase Pnma-SnO and low-pressure phase α-SnO for the phase transition path Pnma-SnO →β-SnO → α-SnO. Two phase transition analyses indicate that there is a high possibility to synthesize β-SnO under high-pressure conditions and have it remain stable under normal pressure. Finally, our study reveals that the conductive property of β-SnO can be engineered in a low-pressure range (0–9 GPa) through a semiconductor-to-metal transition, while maintaining transparency in the visible light range.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Iman Rousta ◽  
Farshad Javadizadeh ◽  
Fatemeh Dargahian ◽  
Haraldur Ólafsson ◽  
Amin Shiri-Karimvandi ◽  
...  

In this study, precipitation data for 483 synoptic stations, and the U&V component of wind and HGT data for 4 atmospheric levels were respectively obtained from IRIMO and NCEP/NCAR databases (1961–2013). The precipitation threshold of 1 mm and a minimum prevalence of 50% were the criteria based on which the prevalent precipitation of Iran was identified. Then, vorticity of days corresponding to prevalent winter precipitation was calculated and, by performing cluster analysis, the representative days of vorticity were specified. The results showed that prevalent winter precipitation vorticity in Iran is related to the vorticity patterns of low pressure of Mediterranean-low pressure of Persian Gulf dual-core, low pressure closed of central Iran-high pressure of East Europe, Ural low pressure-Middle East High pressure, Saudi Arabia low pressure-Europe high pressure, and high-pressure belt of Siberia-low pressure of central Iran. At the same time, the most intense vorticity occurred when the climate of Iran was influenced by a massive belt pattern of Siberian high pressure-low pressure of central Iran. However, at the time of prevalent winter precipitation in Iran, an intense vorticity is drawn with the direction of Northeast and Northwest from the center of Iraq to the south of Iran.


2021 ◽  
Vol 258 ◽  
pp. 117614
Author(s):  
Ilya V. Novikov ◽  
Marina A. Pigaleva ◽  
Alexander V. Naumkin ◽  
Gennady A. Badun ◽  
Eduard E. Levin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document