Water/Oil Displacement by Spontaneous Imbibition Through Multiscale Imaging and Implication on Wettability in Wolfcamp Shale

Author(s):  
Sheng Peng ◽  
Yijin Liu ◽  
Lucy Tingwei Ko ◽  
William Ambrose
SPE Journal ◽  
2021 ◽  
pp. 1-15
Author(s):  
Sheng Peng ◽  
Pavel Shevchenko ◽  
Priyanka Periwal ◽  
Robert M. Reed

Summary Water-oil displacement is an important process that occurs in a shale matrix after hydraulic fracturing and in water-based enhanced oil recovery. Current understanding of this displacement process is limited because of the complicated pore structure and surface properties in shale. In this work, this process and its controlling factors are investigated through a comparative study of three shale samples that have different types of pore systems and wettability. An integrated method of imbibition and multiscale imaging was applied, and a modified oleic tracer that can better represent oil flow was used in imbibition testing and micro-computed tomography (CT) imaging. Scanning electron microscope (SEM) pore characterization was then performed under high magnification with guidance from the micro-CT images showing the changes caused by oil or water imbibition. New insights were obtained on the importance of both wettability and pore size effect on oil recovery and the distribution of residual oil after water-oil displacement. Connectivity of pores with different wettability is also discussed based on 3D analysis and SEM pore characterization. Collectively, these new findings improve the understanding of the complicated process of water-oil displacement and the role of influencing factors. Important implications for improved oil recovery strategy in shale are discussed for different types of reservoir rocks. The integrated imaging and imbibition technique provides a new path for further investigation of improved oil recovery in shale.


SPE Journal ◽  
2016 ◽  
Vol 21 (04) ◽  
pp. 1126-1139 ◽  
Author(s):  
Robin Singh ◽  
Kishore K. Mohanty

Summary The goal of this work is to systematically study the effect of wettability alteration and foaming, either acting individually or synergistically, on tertiary oil recovery in oil-wet carbonate cores. Three types of anionic-surfactant formulations were used: alkyl propoxy sulfate (APS), which exhibited low interfacial tension (IFT), wettability alteration, and weak foaming; alpha-olefin sulfonate (AOS), which showed no wettability alteration but good foaming; and a blend of APS, AOS, and a zwitterionic-foam booster, which showed low IFT, wettability alteration, and good foaming. First, contact-angle experiments were conducted on oil-wet calcite plates to evaluate their wettability-altering capabilities. Second, spontaneous imbibitions in a microchannel were performed to study the role of IFT reduction and wettability alteration by these formulations. Third, static foam tests were conducted to evaluate their foaming performance in bulk. Fourth, foam-flow experiments were conducted in cores to evaluate potential synergism between the anionic-surfactant AOS and the zwitterionic surfactants in stabilizing foam in the absence of crude oil. Finally, oil-displacement experiments were performed by use of a vuggy, oil-wet, dolomite core saturated with a crude oil. After secondary waterfloods, surfactant solutions were coinjected with methane gas at a fixed foam quality (gas-volume fraction). Contact-angle and spontaneous-imbibition experiments showed that AOS can act as a wettability-altering surfactant in the presence of sodium carbonate, but not alone. No synergy was observed in foam stabilization by means of the blend of zwitterionic surfactant and AOS solution (1:1) in a water-wet carbonate core. Oil-displacement experiments in oil-wet carbonate core revealed that coinjection of wettability-altering surfactant and gas can recover a significant amount of oil [33% original oil in place (OOIP)] over waterflood. During foam flooding, with AOS as the foaming agent, only a weak foam was propagated in a carbonate core, irrespective of the core wettability. A blend of wettability-altering surfactant, AOS, and zwitterionic surfactant not only altered the wettability of carbonate core from oil-wet to water-wet, but also significantly increased the foam-pressure gradient in the presence of crude oil.


SPE Journal ◽  
2021 ◽  
pp. 1-24
Author(s):  
Maissa Souayeh ◽  
Rashid S. Al-Maamari ◽  
Ahmed Mansour ◽  
Mohamed Aoudia ◽  
Thomas Divers

Summary Coupling polymer with low-salinity water (LSW) to promote enhanced oil recovery (EOR) in carbonate reservoirs has attracted significant interest in the petroleum industry. However, low-salinity polymer (LSP) application to improve oil extraction from such rocks remains a challenge because of the complex synergism between these two EOR agents. Thus, this paper highlights the main factors that govern the LSP displacement process in carbonate reservoirs in terms of wettability alteration and mobility control. A series of experiments including contact angle, spontaneous imbibition, injectivity, adsorption, and oil displacement tests were performed. The impact of mineral dissolution on the polymer/brine and polymer/rock surface interactions and its possible connection to the efficiency of the LSP in carbonates was also investigated using ζ potential analysis following an elaborative procedure. All experiments were executed at elevated temperature (75°C) using two polymers (SAV10) of different molecular weights (MWs) prepared at varying concentrations and salinities. Contact angle measurements showed that increasing the polymer concentration and MW and, at the same time, decreasing the solution salinity could effectively rend homogeneous oil-wet calcite surfaces strongly water-wet. Conversely, spontaneous imbibition tests using heterogonous oil-wet Indiana limestone cores showed that the polymer viscosity and its molecular size hinder the performance of the polymer to modify the wettability of the core samples at high concentration and MW because they could limit its penetration into the porous medium. On the other hand, the results obtained from polymer injectivities showed that LSP had better propagation with lower filtration effects in comparison with high-salinity polymer (HSP). However, polymer adsorption and inaccessible pore volume (IPV) increased with the decrease of salinity. Calcite mineral dissolution triggered by LSP, which is associated with an increase in pH and [Ca2+], considerably influenced the polymer viscosity. In addition, ζ potential measurements showed that the LSP altered the rock surface charge from positive toward negative and at the same time, the Ca2+ released due to mineral dissolution could modify the polymer molecule charge toward positive. This confirms that mineral dissolution impressively results in better wettability alteration performance; however, it could lead to undesirable high polymer adsorption at low salinity. These findings provide new insight into the influence of mineral dissolution on polymer performance in carbonates. Finally, forced oil displacement tests revealed that both HSP and LSP extracted approximatively the same amount of oil. The HSP could enhance the oil recovery through mobility control. By contrast, wettability alteration could take part in the improvement of oil recovery at LSP, as proved by spontaneous imbibition tests, along with mobility control. Despite possessing high wettability alteration potential, LSP could not yield very high recovery because of its low accessibility into the porous medium. Shearing of the LSP was found effective in improving oil recovery through enhancing the polymer accessibility. This will lead us to simply say that polymer accessibility into carbonates is crucial for the success of the wettability alteration and mobility control processes, which is remarkably important not only for this specific study but also for other various polymer EOR applications.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 411
Author(s):  
Aleksei O. Malahov ◽  
Emil R. Saifullin ◽  
Mikhail A. Varfolomeev ◽  
Sergey A. Nazarychev ◽  
Aidar Z. Mustafin ◽  
...  

The selection of effective surfactants potentially can mobilize oil up to 50% of residuals in mature carbonate oilfields. Surfactants’ screening for such oilfields usually is complicated by the high salinity of water, high lipophilicity of the rock surface, and the heterogeneous structure. A consideration of features of the oilfield properties, as well as separate production zones, can increase the deep insight of surfactants’ influence and increase the effectiveness of surfactant flooding. This article is devoted to the screening of surfactants for two production zones (Bashkirian and Vereian) of the Ivinskoe carbonate oilfield with high water salinity and heterogeneity. The standard core study of both production zones revealed no significant differences in permeability and porosity. On the other hand, an X-ray study of core samples showed differences in their structure and the presence of microporosity in the Bashkirian stage. The effectiveness of four different types of surfactants and surfactant blends were evaluated for both production zones by two different oil displacement mechanisms: spontaneous imbibition and filtration experiments. Results showed the higher effect of surfactants on wettability alteration and imbibition mechanisms for the Bashkirian cores with microporosity and a higher oil displacement factor in the flooding experiments for the Vereian homogeneous cores with lower oil viscosity.


2012 ◽  
Vol 29 (1) ◽  
pp. 25-30 ◽  
Author(s):  
Jie-wen SUN ◽  
Yun-hong DING ◽  
Yi-qiang LI ◽  
Yong-jun LU ◽  
Hong-lan ZOU ◽  
...  

2015 ◽  
Vol 16 (6) ◽  
pp. 560-570 ◽  
Author(s):  
Lawrence Dobrucki ◽  
Dipanjan Pan ◽  
Andrew Smith

Sign in / Sign up

Export Citation Format

Share Document