scholarly journals IDENTIFICATION OF DROUGHT EXTENT BASED ON VCI USING SENTINEL DATA: A CASE STUDY OF THE EASTERN OF IAŞI COUNTY

2019 ◽  
Vol 13 (2) ◽  
pp. 179-186
Author(s):  
Paul Macarof ◽  
Florian Statescu ◽  
Cristian Iulian Birlica ◽  
Paul Gherasim

In this study was analyzed zones affected by drought using Vegetation Condition Index (VCI), that is based on Normalized Difference Vegetation Index (NDVI). This fact, drought, is one of the most wide -spread and least understood natural phenomena. In this paper was used remote sensing (RS) data, kindly provided by The European Space Agency (ESA), namely Sentinel-2 (S-2) Multispectral Instrument (MSI) and wellkonwn images Landsat 8 Operational Land Imager (OLI). The RS images was processed in SNAP and ArcMap. Study Area, was considered the eastern of Iasi county. The main purpose of paper was to investigating if Sentinel images can be used for VCI analysis.

2019 ◽  
pp. 99-108
Author(s):  
Максим В’ячеславович Марюшко ◽  
Руслан Едуардович Пащенко ◽  
Наталія Сергіївна Коблюк

The subject of the study in the article is the growing need for the use of spatial information for efficient agricultural production, due to the growing tendency of Earth remote sensing data accessibility, which, due to the spatial and temporal resolution improvement, can be used in the land cover analysis and other related jobs. The goal is to review the obtaining process of satellite multispectral space imagery from Sentinel-2 and to consider the possibility of their use for monitoring crops during the entire vegetation phase. The tasks: to study the modern needs of agricultural producers in the field of analysis of land cover occupied by agricultural crops; the analysis of the European Space Agency programs and the global land program Copernicus, which uses spatial information from Sentinel-2 for use in the agricultural sector; estimation of the constellation characteristics of Sentinel-2, imaging equipment and remote sensing data processing results by ground services received from Internet services; the use of Sentinel-2 multispectral space imagery for monitoring crops during the entire vegetation phase. The following results were obtained. After analyzing agricultural producers needs and the European Space Agency program, the feasibility of using multispectral space images taken by the Multispectral Instrument installed on satellites Sentinel-2 was established. Free access to the space imagery database is provided through the Copernicus Open Access Hub Internet Service. For the researched territory, Poltava region, Chutov district, the village of Vilkhovatka, various time space images were obtained and the normalized difference vegetation index (NDVI) was calculated. Histogram analysis of the obtained vegetation index values distribution within a single field (corn to grain) allows to reveal a quantitative and qualitative change in biomass, indicating a change in the vegetative phase. Conclusions. The approach described in this paper allows to conduct monitoring of the cropping state during the vegetation phase using both qualitative – visual analysis and quantitative – NDVI index, criteria. The change in the values of the normalized difference vegetation index can reveal a change in the biomass state. However, for calculating the NDVI index, data from near-infrared and red channels is needed, which complicates the acquisition of the original image. Therefore, in order to obtain the quantitative criteria in subsequent jobs, it is expedient to consider the possibility of using fractal dimension, which will reduce the amount of input data required for calculations.


2020 ◽  
Vol 12 (12) ◽  
pp. 2015 ◽  
Author(s):  
Manuel Ángel Aguilar ◽  
Rafael Jiménez-Lao ◽  
Abderrahim Nemmaoui ◽  
Fernando José Aguilar ◽  
Dilek Koc-San ◽  
...  

Remote sensing techniques based on medium resolution satellite imagery are being widely applied for mapping plastic covered greenhouses (PCG). This article aims at testing the spectral consistency of surface reflectance values of Sentinel-2 MSI (S2 L2A) and Landsat 8 OLI (L8 L2 and the pansharpened and atmospherically corrected product from L1T product; L8 PANSH) data in PCG areas located in Spain, Morocco, Italy and Turkey. The six corresponding bands of S2 and L8, together with the normalized difference vegetation index (NDVI), were generated through an OBIA approach for each PCG study site. The coefficient of determination (r2) and the root mean square error (RMSE) were computed in sixteen cloud-free simultaneously acquired image pairs from the four study sites to evaluate the coherence between the two sensors. It was found that the S2 and L8 correlation (r2 > 0.840, RMSE < 9.917%) was quite good in most bands and NDVI. However, the correlation of the two sensors fluctuated between study sites, showing occasional sun glint effects on PCG roofs related to the sensor orbit and sun position. Moreover, higher surface reflectance discrepancies between L8 L2 and L8 PANSH data, mainly in the visible bands, were always observed in areas with high-level aerosol values derived from the aerosol quality band included in the L8 L2 product (SR aerosol). In this way, the consistency between L8 PANSH and S2 L2A was improved mainly in high-level aerosol areas according to the SR aerosol band.


Fire ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 68
Author(s):  
Sarah A. Lewis ◽  
Peter R. Robichaud ◽  
Andrew T. Hudak ◽  
Eva K. Strand ◽  
Jan U. H. Eitel ◽  
...  

As wildland fires amplify in size in many regions in the western USA, land and water managers are increasingly concerned about the deleterious effects on drinking water supplies. Consequences of severe wildfires include disturbed soils and areas of thick ash cover, which raises the concern of the risk of water contamination via ash. The persistence of ash cover and depth were monitored for up to 90 days post-fire at nearly 100 plots distributed between two wildfires in Idaho and Washington, USA. Our goal was to determine the most ‘cost’ effective, operational method of mapping post-wildfire ash cover in terms of financial, data volume, time, and processing costs. Field measurements were coupled with multi-platform satellite and aerial imagery collected during the same time span. The image types spanned the spatial resolution of 30 m to sub-meter (Landsat-8, Sentinel-2, WorldView-2, and a drone), while the spectral resolution spanned visible through SWIR (short-wave infrared) bands, and they were all collected at various time scales. We that found several common vegetation and post-fire spectral indices were correlated with ash cover (r = 0.6–0.85); however, the blue normalized difference vegetation index (BNDVI) with monthly Sentinel-2 imagery was especially well-suited for monitoring the change in ash cover during its ephemeral period. A map of the ash cover can be used to estimate the ash load, which can then be used as an input into a hydrologic model predicting ash transport and fate, helping to ultimately improve our ability to predict impacts on downstream water resources.


Author(s):  
Perminder Singh ◽  
Ovais Javeed

Normalized Difference Vegetation Index (NDVI) is an index of greenness or photosynthetic activity in a plant. It is a technique of obtaining  various features based upon their spectral signature  such as vegetation index, land cover classification, urban areas and remaining areas presented in the image. The NDVI differencing method using Landsat thematic mapping images and Landsat oli  was implemented to assess the chane in vegetation cover from 2001to 2017. In the present study, Landsat TM images of 2001 and landsat 8 of 2017 were used to extract NDVI values. The NDVI values calculated from the satellite image of the year 2001 ranges from 0.62 to -0.41 and that of the year 2017 shows a significant change across the whole region and its value ranges from 0.53 to -0.10 based upon their spectral signature .This technique is also  used for the mapping of changes in land use  and land cover.  NDVI method is applied according to its characteristic like vegetation at different NDVI threshold values such as -0.1, -0.09, 0.14, 0.06, 0.28, 0.35, and 0.5. The NDVI values were initially computed using the Natural Breaks (Jenks) method to classify NDVI map. Results confirmed that the area without vegetation, such as water bodies, as well as built up areas and barren lands, increased from 35 % in 2001 to 39.67 % in 2017.Key words: Normalized Difference Vegetation Index,land use/landcover, spectral signature 


2019 ◽  
Vol 12 (4) ◽  
pp. 175-187
Author(s):  
Thanh Tien Nguyen

The objective of the study is to assess changes of fractional vegetation cover (FVC) in Hanoi megacity in period of 33 years from 1986 to 2016 based on a two endmember spectral mixture analysis (SMA) model using multi-spectral and multi-temporal Landsat-5 TM and -8 OLI images. Landsat TM/OLI images were first radiometrically corrected. FVC was then estimated by means of a combination of Normalized Difference Vegetation Index (NDVI) and classification method. The estimated FVC results were validated using the field survey data. The assessment of FVC changes was finally carried out using spatial analysis in GIS. A case study from Hanoi city shows that: (i) the proposed approach performed well in estimating the FVC retrieved from the Landsat-8 OLI data and had good consistency with in situ measurements with the statistically achieved root mean square error (RMSE) of 0.02 (R 2 =0.935); (ii) total FVC area of 321.6 km 2 (accounting for 9.61% of the total area) was slightly reduced in the center of the city, whereas, FVC increased markedly with an area of 1163.6 km 2 (accounting for 34.78% of the total area) in suburban and rural areas. The results from this study demonstrate the combination of NDVI and classification method using Landsat images are promising for assessing FVC change in megacities.


Author(s):  
Katarzyna Dabrowska-Zielinska ◽  
Jan Musial ◽  
Alicja Malinska ◽  
Maria Budzynska ◽  
Radoslaw Gurdak ◽  
...  

Soil moisture (SM) plays an essential role in environmental studies related to wetlands, an ecosystem sensitive to climate change. Hence, there is the need for its constant monitoring. SAR (Synthetic Aperture Radar) satellite imagery is the only mean to fulfill this objective regardless of the weather. The objective of the study was to develop the methodology for SM retrieval under wetland vegetation using Sentinel-1 (S-1) satellite data. The study was carried out during the years 2015&ndash;2017 in the Biebrza Wetlands, situated in northeastern Poland. At the Biebrza Wetlands, two Sentinel-1 validation sites were established, covering grassland and marshland biomes, where a network of 18 stations for soil moisture measurement was deployed. The sites were funded by the European Space Agency (ESA), and the collected measurements are available through the International Soil Moisture Network (ISMN). The NDVI (Normalized Difference Vegetation Index) was derived from the optical imagery of a MODIS (Moderate Resolution Imaging Spectroradiometer) sensor onboard the Terra satellite. The SAR data of the Sentinel-1 satellite with VH (vertical transmit and horizontal receive) and VV (vertical transmit and vertical receive) polarization were applied to soil moisture retrieval for a broad range of NDVI values and soil moisture conditions. The new methodology is based on research into the effect of vegetation on backscatter () changes under different soil moisture and vegetation (NDVI) conditions. It was found that the state of the vegetation may be described by the difference between  VH and  VV, or the ratio of  VV/VH, as calculated from the Sentinel-1 images. The most significant correlation coefficient for soil moisture was found for data that was acquired from the ascending tracks of the Sentinel-1 satellite, characterized by the lowest incidence angle, and SM at a depth of 5 cm. The study demonstrated that the use of the inversion approach, which was applied to the new developed models and includes the derived indices based on S-1, allowed the estimation of SM for peatlands with reasonable accuracy (RMSE ~ 10 vol. %). Due to the temporal frequency of the two S-1 satellites&rsquo; (S-1A and S-1B) acquisitions, it is possible to monitor SM changes every six days. The conclusion drawn from the study emphasizes a demand for the derivation of specific soil moisture retrieval algorithms that are suited for wetland ecosystems, where soil moisture is several times higher than in agricultural areas.


2020 ◽  
Vol 12 (17) ◽  
pp. 2708 ◽  
Author(s):  
Qi Wang ◽  
Jiancheng Li ◽  
Taoyong Jin ◽  
Xin Chang ◽  
Yongchao Zhu ◽  
...  

Soil moisture is an important variable in ecological, hydrological, and meteorological studies. An effective method for improving the accuracy of soil moisture retrieval is the mutual supplementation of multi-source data. The sensor configuration and band settings of different optical sensors lead to differences in band reflectivity in the inter-data, further resulting in the differences between vegetation indices. The combination of synthetic aperture radar (SAR) data with multi-source optical data has been widely used for soil moisture retrieval. However, the influence of vegetation indices derived from different sources of optical data on retrieval accuracy has not been comparatively analyzed thus far. Therefore, the suitability of vegetation parameters derived from different sources of optical data for accurate soil moisture retrieval requires further investigation. In this study, vegetation indices derived from GF-1, Landsat-8, and Sentinel-2 were compared. Based on Sentinel-1 SAR and three optical data, combined with the water cloud model (WCM) and the advanced integral equation model (AIEM), the accuracy of soil moisture retrieval was investigated. The results indicate that, Sentinel-2 data were more sensitive to vegetation characteristics and had a stronger capability for vegetation signal detection. The ranking of normalized difference vegetation index (NDVI) values from the three sensors was as follows: the largest was in Sentinel-2, followed by Landsat-8, and the value of GF-1 was the smallest. The normalized difference water index (NDWI) value of Landsat-8 was larger than that of Sentinel-2. With reference to the relative components in the WCM model, the contribution of vegetation scattering exceeded that of soil scattering within a vegetation index range of approximately 0.55–0.6 in NDVI-based models and all ranges in NDWI1-based models. The threshold value of NDWI2 for calculating vegetation water content (VWC) was approximately an NDVI value of 0.4–0.55. In the soil moisture retrieval, Sentinel-2 data achieved higher accuracy than data from the other sources and thus was more suitable for the study for combination with SAR in soil moisture retrieval. Furthermore, compared with NDVI, higher accuracy of soil moisture could be retrieved by using NDWI1 (R2 = 0.623, RMSE = 4.73%). This study provides a reference for the selection of optical data for combination with SAR in soil moisture retrieval.


2019 ◽  
Vol 9 (10) ◽  
pp. 2016 ◽  
Author(s):  
Bassim Mohammed Hashim ◽  
Maitham Abdullah Sultan ◽  
Mazin Najem Attyia ◽  
Ali A. Al Maliki ◽  
Nadhir Al-Ansari

Marshes represent a unique ecosystem covering a large area of southern Iraq. In a major environmental disaster, the marshes of Iraq were drained, especially during the 1990s. Since then, droughts and the decrease in water imports from the Tigris and Euphrates rivers from Turkey and Iran have prevented them from regaining their former extent. The aim of this research is to extract the values of the normalized difference vegetation index (NDVI) for the period 1977–2017 from Landsat 2 MSS (multispectral scanner), Landsat 8 OLI (operational land imager) and Sentinel 2 MSI (multi-spectral imaging mission) satellite images and use supervised classification to quantify land and water cover change. The results from the two satellites (Landsat 2 and Landsat 8) are compared with Sentinel 2 to determine the best tool for detecting changes in land and water cover. We also assess the potential impacts of climate change through the study of the annual average maximum temperature and precipitation in different areas in the marshes for the period 1981–2016. The NDVI analysis and image classification showed the degradation of vegetation and water bodies in the marshes, as vast areas of natural vegetation and agricultural lands disappeared and were replaced with barren areas. The marshes were influenced by climatic change, including rising temperature and the diminishing amount of precipitation during 1981–2016.


Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 327 ◽  
Author(s):  
Remy Fieuzal ◽  
Vincent Bustillo ◽  
David Collado ◽  
Gerard Dedieu

The objective of this study is to address the capabilities of multi-temporal optical images to estimate the fine-scale yield variability of wheat, over a study site located in southwestern France. The methodology is based on the Landsat-8 and Sentinel-2 satellite images acquired after the sowing and before the harvest of the crop throughout four successive agricultural seasons, the reflectance constituting the input variables of a statistical algorithm (random forest). The best performances are obtained when the Normalized Difference Vegetation Index (NDVI) is combined with the yield maps collected during the crop rotation, the agricultural season 2014 showing the lower level of performances with a coefficient of determination (R2) of 0.44 and a root mean square error (RMSE) of 8.13 quintals by hectare (q.h−1) (corresponding to a relative error of 12.9%), the three other years being associated with values of R2 close or upper to 0.60 and RMSE lower than 7 q.h−1 (corresponding to a relative error inferior to 11.3%). Moreover, the proposed approach allows estimating the crop yield throughout the agricultural season, by using the successive images acquired from the sowing to the harvest. In such cases, early and accurate yield estimates are obtained three months before the end of the crop cycle. At this phenological stage, only a slight decrease in performance is observed compared to the statistic obtained just before the harvest.


Sign in / Sign up

Export Citation Format

Share Document