scholarly journals Molecular screening for Anaplasmataceae in ticks and tsetse flies from Ethiopia

2016 ◽  
Vol 64 (1) ◽  
pp. 65-70 ◽  
Author(s):  
Sándor Hornok ◽  
Getachew Abichu ◽  
Nóra Takács ◽  
Miklós Gyuranecz ◽  
Róbert Farkas ◽  
...  

Hard ticks and tsetse flies are regarded as the most important vectors of disease agents in Sub-Saharan Africa. With the aim of screening these blood-sucking arthropods for vector-borne pathogens belonging to the family Anaplasmataceae in South-Western Ethiopia, four species of tsetse flies (collected by traps) and seven species of ixodid ticks (removed from cattle) were molecularly analysed. DNA was extracted from 296 individual ticks and from 162 individuals or pools of tsetse flies. Besides known vector–pathogen associations, in Amblyomma cohaerens ticks sequences of Anaplasma marginale and A. phagocytophilum were detected, the latter for the first time in any ticks from cattle in Africa. In addition, part of the gltA gene of Ehrlichia ruminantium was successfully amplified from tsetse flies (Glossina pallidipes). First-time identification of sequences of the above pathogens in certain tick or tsetse fly species may serve as the basis of further epidemiological and transmission studies.

2020 ◽  
Author(s):  
Mallion Kangume ◽  
Denis Muhangi ◽  
Joseph Byaruhanga ◽  
Aggrey Agaba ◽  
Joachim Sserunkuma ◽  
...  

Abstract Background: African Animal Trypanosomiasis (AAT) is an infectious disease of economic and veterinary importance in Sub-Saharan Africa. The current study aimed at providing baseline information on tsetse fly distribution and occurrence of Trypanosoma species in cattle and goats within and around Queen Elizabeth National Park (QENP), in western Uganda. A minimal entomological survey was conducted in April 2017 while blood samples collected from cattle (n = 576) and goats (n = 319) in June 2015 and May 2017 were subjected to Polymerase Chain Reaction (PCR) to determine the occurrence of Trypanosoma species.Results: Glossina pallidipes and G. fuscipes were the only tsetse fly species trapped in the study area with apparent density of 20.6. The overall prevalence of Trypanosoma spp. was 27% for goats and approximately 38% for cattle. The most prevalent Trypanosoma spp. in goats was T. brucei (n = 60, 18.8%) while the most prevalent in cattle was T. congolense (n = 102, 27.1%). In both cattle and goats, a dual infection of T. brucei + T. congolense was most encountered. In goats a triple infection of T. brucei + T. congolense + T. vivax was higher than that in cattle. Conclusions: Current findings show that there are two species of tsetse flies, and three species of Trypanosoma, important in transmission of AAT in both cattle and goats. Control efforts of AAT have mainly focused on cattle and this study proves that prevention and control efforts should also involve goat farmers.


2005 ◽  
Vol 95 (5) ◽  
pp. 437-447 ◽  
Author(s):  
J.O. Ouma ◽  
J.G. Marquez ◽  
E.S. Krafsur

AbstractTsetse flies are confined to sub-Saharan Africa where they occupy discontinuous habitats. In anticipation of area-wide control programmes, estimates of gene flow among tsetse populations are necessary. Genetic diversities were partitioned at eight microsatellite loci and five mitochondrial loci in 21 Glossina pallidipes Austin populations. At microsatellite loci, Nei's unbiased gene diversity averaged over loci was 0.659 and the total number of alleles was 214, only four of which were shared among all populations. The mean number of alleles per locus was 26.8. Random mating was observed within but not among populations(fixation index FST = 0.180) and 81% of the genetic variance was within populations. Thirty-nine mitochondrial variants were detected. Mitochondrial diversities in populations varied from 0 to 0.85 and averaged 0.42, and FST=0.51. High levels of genetic differentiation were characteristic, extending even to subpopulations separated by tens and hundreds of kilometres, and indicating low rates of gene flow.


2020 ◽  
Author(s):  
Mallion Kangume ◽  
Denis Muhangi ◽  
Joseph Byaruhanga ◽  
Aggrey Agaba ◽  
Joachim Sserunkuma ◽  
...  

Abstract Background African Animal Trypanosomiasis (AAT) is an infectious disease of economic and public health importance hindering agricultural productivity in Sub-Saharan Africa. The current study aimed at providing baseline information on tsetse fly distribution and occurrence of Trypanosoma species in cattle and goats within and around Queen Elizabeth National Park (QENP), in western Uganda. A minimal entomological survey was conducted in April 2017 while blood samples collected from cattle (n = 576) and goats (n = 319) in June 2015 and May 2017 were subjected to microscopy and Polymerase Chain Reaction (PCR) to determine the occurrence of trypanosome species. Results Glossina pallidipes and G. fuscipes were the only tsetse fly species trapped in the study area with apparent density of 20.6. The overall prevalence of Trypanosoma spp. in cattle and goats was 38.9% and 37% respectively for samples collected in 2015 while the prevalence of Trypanosome spp in cattle samples collected in 2017 was 38%. In 2015, T. brucei was the highest prevalent trypanosome in both cattle (23%) and goats (18.8%). In both cattle and goats, a mixed infection of T. brucei + T. congolense was most encountered with prevalence of 4.8% and 4.1% in cattle and goats, respectively. In goats a mixed infection of T. brucei + T. congolense + T. vivax was higher (2.8%) than in cattle (2.4%). In 2017, in cattle (n = 250), the prevalence for T. congolense was 32.4%, T. vivax was 6.8% and T. brucei was 6.4%. A co-infection of T. brucei and T. congolense was most prevalent (7.4%). Only 3.2% of the cattle were co-infected with all the three Trypanosome species. Conclusions Current findings show that there are two types of Tsetse fly specie, s important in transmission of AAT. Presence of these parasites in goats shows that they also play a key role in epidemiology of the disease and control efforts should aim also involve goat farmers.


mBio ◽  
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Balázs Szöőr ◽  
Dorina V. Simon ◽  
Federico Rojas ◽  
Julie Young ◽  
Derrick R. Robinson ◽  
...  

ABSTRACT Glycosomes are peroxisome-related organelles that compartmentalize the glycolytic enzymes in kinetoplastid parasites. These organelles are developmentally regulated in their number and composition, allowing metabolic adaptation to the parasite’s needs in the blood of mammalian hosts or within their arthropod vector. A protein phosphatase cascade regulates differentiation between parasite developmental forms, comprising a tyrosine phosphatase, Trypanosoma brucei PTP1 (TbPTP1), which dephosphorylates and inhibits a serine threonine phosphatase, TbPIP39, which promotes differentiation. When TbPTP1 is inactivated, TbPIP39 is activated and during differentiation becomes located in glycosomes. Here we have tracked TbPIP39 recruitment to glycosomes during differentiation from bloodstream “stumpy” forms to procyclic forms. Detailed microscopy and live-cell imaging during the synchronous transition between life cycle stages revealed that in stumpy forms, TbPIP39 is located at a periflagellar pocket site closely associated with TbVAP, which defines the flagellar pocket endoplasmic reticulum. TbPTP1 is also located at the same site in stumpy forms, as is REG9.1, a regulator of stumpy-enriched mRNAs. This site provides a molecular node for the interaction between TbPTP1 and TbPIP39. Within 30 min of the initiation of differentiation, TbPIP39 relocates to glycosomes, whereas TbPTP1 disperses to the cytosol. Overall, the study identifies a “stumpy regulatory nexus” (STuRN) that coordinates the molecular components of life cycle signaling and glycosomal development during transmission of Trypanosoma brucei. IMPORTANCE African trypanosomes are parasites of sub-Saharan Africa responsible for both human and animal disease. The parasites are transmitted by tsetse flies, and completion of their life cycle involves progression through several development steps. The initiation of differentiation between blood and tsetse fly forms is signaled by a phosphatase cascade, ultimately trafficked into peroxisome-related organelles called glycosomes that are unique to this group of organisms. Glycosomes undergo substantial remodeling of their composition and function during the differentiation step, but how this is regulated is not understood. Here we identify a cytological site where the signaling molecules controlling differentiation converge before the dispersal of one of them into glycosomes. In combination, the study provides the first insight into the spatial coordination of signaling pathway components in trypanosomes as they undergo cell-type differentiation.


2018 ◽  
Author(s):  
Brian L. Weiss ◽  
Michele A. Maltz ◽  
Aurélien Vigneron ◽  
Yineng Wu ◽  
Katharine Walter ◽  
...  

AbstractTsetse flies (Glossina spp.) vector pathogenic trypanosomes (Trypanosoma spp.) in sub-Saharan Africa. These parasites cause human and animal African trypanosomiases, which are debilitating diseases that inflict an enormous socio-economic burden on inhabitants of endemic regions. Current disease control strategies rely primarily on treating infected animals and reducing tsetse population densities. However, relevant programs are costly, labor intensive and difficult to sustain. As such, novel strategies aimed at reducing tsetse vector competence require development. Herein we investigated whether an Enterobacter bacterium (Esp_Z), which confers Anopheles gambiae with resistance to Plasmodium, is able to colonize tsetse and induce a trypanosome refractory phenotype in the fly. Esp_Z established stable infections in tsetse’s gut, and exhibited no adverse effect on the survival of individuals from either group. Flies with established Esp_Z infections in their gut were significantly more refractory to infection with two distinct trypanosome species (T. congolense, 6% infection; T. brucei, 32% infection) than were age-matched flies that did not house the exogenous bacterium (T. congolense, 36% infected; T. brucei, 70% infected). Additionally, 52% of Esp_Z colonized tsetse survived infection with entomopathogenic Serratia marcescens, compared with only 9% of their wild-type counterparts. These parasite and pathogen refractory phenotypes result from the fact that Esp_Z acidifies tsetse’s midgut environment, which inhibits trypanosome and Serratia growth and thus infection establishment. Finally, we determined that Esp_Z infection does not impact the fecundity of male or female tsetse, nor the ability of male flies to compete with their wild-type counterparts for mates. We propose that Esp_Z could be used as one component of an integrated strategy aimed at reducing the ability of tsetse to transmit pathogenic trypanosomes.Author SummaryTsetse flies transmit pathogenic African trypanosomes, which are the causative agents of socio-economically devastating human and animal African trypanosomiases. These diseases are currently controlled in large part by reducing the population size of tsetse vectors through the use of insecticides, traps and sterile insect technique. However, logistic and monetary hurdles often preclude the prolonged application of procedures necessary to maintain these control programs. Thus, novel strategies, including those aimed at sustainably reducing the ability of tsetse to transmit trypanosomes, are presently under development. Herein we stably colonize tsetse flies with a bacterium (Enterobacter sp. Z, Esp_Z) that acidifies their midgut, thus rendering the environment inhospitable to infection with two distinct, epidemiologically important trypanosome strains as well as an entomopathogenic bacteria. In addition to inducing a trypanosome refractory phenotype, colonization of tsetse with Esp_Z exerts only a modest fitness cost on the fly. Taken together, these findings suggest that Esp_Z could be applied to enhance the effectiveness of currently employed tsetse control programs.


2021 ◽  
Vol 8 ◽  
Author(s):  
Simbarashe Chitanga ◽  
Kennedy Chibesa ◽  
Karen Sichibalo ◽  
Benjamin Mubemba ◽  
King S. Nalubamba ◽  
...  

Tick-borne zoonotic pathogens are increasingly becoming important across the world. In sub-Saharan Africa, tick-borne pathogens identified include viruses, bacteria and protozoa, with Rickettsia being the most frequently reported. This study was conducted to screen and identify Rickettsia species in ticks (Family Ixodidae) infesting livestock in selected districts of southern Zambia. A total of 236 ticks from three different genera (Amblyomma, Hyalomma, and Rhipicephalus) were collected over 14 months (May 2018–July 2019) and were subsequently screened for the presence of Rickettsia pathogens based on PCR amplification targeting the outer membrane protein B (ompB). An overall Rickettsia prevalence of 18.6% (44/236) was recorded. Multi-locus sequencing and phylogenetic characterization based on the ompB, ompA, 16S rRNA and citrate synthase (gltA) genes revealed the presence of Rickettsia africae (R. africae), R. aeschlimannii-like species and unidentified Rickettsia species. While R. aeschlimannii-like species are being reported for the first time in Zambia, R. africae has been reported previously, with our results showing a wider distribution of the bacteria in the country. Our study reveals the potential risk of human infection by zoonotic Rickettsia species and highlights the need for increased awareness of these infections in Zambia's public health systems.


2021 ◽  
Vol 18 (1) ◽  
pp. 33-38
Author(s):  
A.O. Omonona ◽  
S.A. Abioye ◽  
P.O. Odeniran ◽  
I.O. Ademola

Tsetse fly infestation in national parks is a major health risk to both the wildlife and tourists coming to sub-Saharan Africa. However, information on distribution and diversity of tsetse flies and trypanosome infection rate in Protected Areas like Old Oyo National Park in south-west Nigeria is largely unknown. Thus, the study evaluates distribution and diversity of tsetse flies in Magurba Range of Old Oyo National Park. Twelve Nzi traps were set at 50 m equidistance to capture Glossina species for a period of six months between February and August, 2019, considering both the altitudinal and ecological significance. A total of 136 tsetse flies belonging to four species; G. palpalis, G. tachinoides, G. morsitans and G. fusca; were captured. More Glossina species were captured during dry season 77.9% (70.0-84.6) than the wet season 22.1% (15.4-30.0). There was significant difference (p = 0.0001; x2 = 84.9; OR = 12.5) between the proportion of Glossina species captured at the riverine areas (106; 77.9%) and the woodland/forest areas (30; 22.1%). Glossina captured at ground level and 30 cm above ground were 71 (52.2 %) and 65 (47.8%) respectively. The overall prevalence of trypanosome infection (2.94%) was observed for Glossina spp. The presence of infected Glossina spp. indicated an urgent need to establish a concise strategic vector control in National Parks, in order to reduce the risk of transmission to both wildlife and humans in the area. The park is frequently visited by tourists, rangers, researchers and students for educational purposes. Keywords: Glossina spp.; Trypanosoma spp.; vector distribution; Old Oyo National Park


2020 ◽  
Vol 17 ◽  
Author(s):  
Balogun Olaoye Solomon ◽  
Ajayi Olukayode Solomon ◽  
Owolabi Temitayo Abidemi ◽  
Oladimeji Abdulkarbir Oladele ◽  
Liu Zhiqiang

: Cissus aralioides is a medicinal plant used in sub-Saharan Africa for treatment of infectious diseases; however the chemical constituents of the plant have not been investigated. Thus, in this study, attempt was made at identifying predominant phytochemical constituents of the plant through chromatographic purification and silylation of the plant extract, and subsequent characterization using spectroscopic and GC-MS techniques. The minimum inhibitory concentration (MICs) for the antibacterial activities of the plant extract, chromatographic fractions and isolated compounds were also examined. Chromatographic purification of the ethyl acetate fraction from the whole plant afforded three compounds: β-sitosterol (1), stigmasterol (2) and friedelin (3). The phytosterols (1 and 2) were obtained together as a mixture. The GC-MS analysis of silylated extract indicated alcohols, fatty acids and sugars as predominant classes, with composition of 24.62, 36.90 and 26.52% respectively. Results of MICs indicated that friedelin and other chromatographic fractions had values (0.0626-1.0 mg/mL) comparable with the standard antibiotics used. Characterization of natural products from C. aralioides is being reported for the first time in this study.


2020 ◽  
Vol 307 (1) ◽  
Author(s):  
Mytnik Joanna ◽  
Davies L. Kevin ◽  
Narajczyk Magdalena ◽  
Łuszczek Dorota ◽  
Kubiak Joanna ◽  
...  

AbstractPolystachya is a large, pantropical orchid genus of 200 species, most of which occur as epiphytes in sub-saharan Africa. The three-lobed labellum of most Polystachya species possesses a fleshy callus and various types of trichomes and papillae. In this paper, we present the results of micromorphological studies on the labellum of 20 species, representing eight of the 13 sections in the genus, using scanning electron microscopy (SEM). Our results show the scale of infrageneric diversity of trichomes and papillae relative to the sampled sections. They also demonstrate the taxonomic value of labellar micromorphology at the sectional level. The study revealed seven types of papillae and five types of trichomes (uni- and multi-cellular) in Polystachya, some of which, are described here for the first time. Clavate trichomes are the most common and are present in 60% of the species studied. Moniliform trichomes mainly occur in sect. Polystachya and are strongly characteristic of the section. Pseudopollen is formed by fragmentation of moniliform trichomes or the detachment of other trichomes as bicellular units. We provide, for the first time, evidence for the detachment of the terminal cells of capitate trichomes.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jakob Weglage ◽  
Friederike Wolters ◽  
Laura Hehr ◽  
Jakob Lichtenberger ◽  
Celina Wulz ◽  
...  

AbstractSchistosomiasis (bilharzia) is a neglected tropical disease caused by parasitic flatworms of the genus Schistosoma, with considerable morbidity in parts of the Middle East, South America, Southeast Asia, in sub-Saharan Africa, and particularly also in Europe. The WHO describes an increasing global health burden with more than 290 million people threatened by the disease and a potential to spread into regions with temperate climates like Corsica, France. The aim of our study was to investigate the influence of S. mansoni infection on colorectal carcinogenic signaling pathways in vivo and in vitro. S. mansoni infection, soluble egg antigens (SEA) and the Interleukin-4-inducing principle from S. mansoni eggs induce Wnt/β-catenin signaling and the protooncogene c-Jun as well as downstream factor Cyclin D1 and markers for DNA-damage, such as Parp1 and γH2a.x in enterocytes. The presence of these characteristic hallmarks of colorectal carcinogenesis was confirmed in colon biopsies from S. mansoni-infected patients demonstrating the clinical relevance of our findings. For the first time it was shown that S. mansoni SEA may be involved in the induction of colorectal carcinoma-associated signaling pathways.


Sign in / Sign up

Export Citation Format

Share Document