scholarly journals Preparation of red and grey elemental selenium for food fortification

2021 ◽  
Author(s):  
B. Khandsuren ◽  
J. Prokisch

AbstractIn recent years, the importance of nanomaterials in food science, medicine, etc. has been increasing quickly. Herein, organic and inorganic red selenium nanoparticles synthesised by the reduction of sodium selenite with chemical and biological reducing agents. Grey hexagonal form in aqueous and powder was assembled at a high temperature of 85 °C for 10 min. Also, selenium enriched yogurt powder was made that contained about 2,000 mg kg−1 selenium, 93.8% of which is in nano form with a size of 50–500 nm. The synthesised nanoparticles were characterised by Dynamic Light Scattering Particle Size Analyzer (DLS), X-ray Diffraction Analysis (XRD), Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM). The prepared SeNPs could be promising additive for a wide range of applications.

2021 ◽  
Author(s):  
Yan Chen ◽  
Yuemei Lan ◽  
Dong Wang ◽  
Guoxing Zhang ◽  
Wenlong Peng ◽  
...  

A series of Gd2-xMoO6:xEu3+(x=0.18-0.38) nanophosphors were synthesized by the solvothermal method. The properties of this nanophosphor were characterized by x-ray diffraction (XRD), transmission electron microscope (TEM), fluorescence spectra and diffuse...


2011 ◽  
Vol 80-81 ◽  
pp. 217-220 ◽  
Author(s):  
Xue Qing Yue ◽  
Hai Jun Fu ◽  
Da Jun Li

Graphite encapsulated nickel nanoparticles were prepared by ball milling andsubsequently annealing a mixture of expanded graphite with nickel powders. The products were characterized by transmission electron microscope and X-ray diffraction. The formation mechanism of the products was discussed. Results show that the products have a size range of 20-150 nm. The graphite and nickel in the products all exhibit a high crystallinity.


2011 ◽  
Vol 236-238 ◽  
pp. 1712-1716 ◽  
Author(s):  
Hai Tao Liu ◽  
Jun Dai ◽  
Jia Jia Zhang ◽  
Wei Dong Xiang

Bismuth selenide (Bi2Se3) hexagonal nanosheet crystals with uniform size were successfully prepared via a solvothermal method at 160°C for 22 h using bismuth trichloride(BiCl3) and selenium powder(Se) as raw materials, sodium bisulfite(NaHSO3) as a reducing agent, diethylene glycol(DEG) as solvent, and ammonia as pH regulator. Various techniques such as X-ray diffraction (XRD), field-emission scanning electron microscope (FESEM), high-resolution transmission electron microscope (HRTEM), and selected area electron diffraction (SAED) were used to characterize the obtained products. Results show that the as-synthesized samples are pure Bi2Se3 hexagonal nanosheet crystals. A possible growth mechanism for Bi2Se3 hexagonal nanosheet crystals is also discussed based on the experiment.


2011 ◽  
Vol 311-313 ◽  
pp. 1713-1716 ◽  
Author(s):  
Yan Rong Sun ◽  
Tao Fan ◽  
Chang An Wang ◽  
Li Guo Ma ◽  
Feng Liu

Nano-hydroxyapatite with different morphology was synthesized by the co-precipitation method coupled with biomineralization using Ca(NO3)2•4H2O and (NH4)2HPO4 as reagents, adding chondroitin sulfate, agarose and aspartic acid as template. The structure and morphology of the prepared powders were characterized by X-ray diffraction (XRD) and transmission electron microscope (TEM).


Nanopages ◽  
2019 ◽  
pp. 1-11
Author(s):  
G. M. Taha ◽  
M. N. Rashed ◽  
M. S. El-Sadek ◽  
M. A. Moghazy

Abstract BiFeO3 (BFO) nanopowder was synthesized in a pure form via a sol- gel method based on glycol gel reaction. Effect of drying and preheating temperature on preventing other phases was studied. Many parameters were studied as calcination temperature and time & stirring temperature as well. The prepared powder was characterized by X-Ray Diffraction of powder (XRD) and Transmission Electron Microscope (TEM). High pure BiFeO3 was obtained by preheated process at 400 °C for 0.5 h and calcination at 600 °C for 0.5 h without any impurities compared to dry at110 °C.


NANO ◽  
2013 ◽  
Vol 08 (04) ◽  
pp. 1350038 ◽  
Author(s):  
JIANQUAN LI ◽  
HUASHI LIU ◽  
JIANING LI ◽  
GUOZHONG LI

Zn was firstly used to improve wear resistance of a TA7 (Ti–5Al–2.5Sn) titanium alloy surface by mean of a laser alloying (LA) technique. The synthesis of the hard coating on a TA7 titanium alloy by LA of Co–Ti–Cr–TiB2–Zn–CeO2 pre-placed powders was investigated by means of scanning electron microscope (SEM), X-ray diffraction (XRD) and high resolution transmission electron microscope (HRTEM). Experimental results indicated lot of the nanocrystals, such as Ti–B/CoZn13 and the amorphous phases were produced in such LA coating. The nucleation and growth of the amorphous phases were retarded by the nanocrystals in a certain extent during the crystallization process of the amorphous phases. Compared with a TA7 alloy substrate, an improvement of the wear resistance was obtained for such LA composite coating.


2021 ◽  
Vol 16 (3) ◽  
pp. 363-367
Author(s):  
Gaoqi Zhang ◽  
Fan Zhang ◽  
Kaifang Wang ◽  
Tao Tian ◽  
Shanyu Liu ◽  
...  

Accurate and real-time detection of formaldehyde (HCHO) in indoor air is urgently needed for human health. In this work, a ceramic material (WO3·H2O) with unique structure was successfully prepared using an efficient hydrothermal method. The crystallinity, morphology and microstructure of the as-prepared sensing material were analyzed by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) as well as transmission electron microscope (TEM). The characterization results suggest that the as-prepared sample is composed of square-like nanoplates with uneven surface. Formaldehyde vapor is utilized as the target gas to investigate gas sensing properties of the synthesized novel nanoplates. The testing results indicate that the as-fabricated gas sensor exhibit high gas response and excellent repeatability to HCHO gas. The response value (Ra/Rg) is 24.5 towards 70 ppm HCHO gas at 350 °C. Besides, the gas sensing mechanism was described.


2009 ◽  
Vol 79-82 ◽  
pp. 1719-1722
Author(s):  
Zhi Hong Zhang ◽  
Shao Yu Zhang ◽  
Xue Dong Liu

Attapulgite clay(ATP) from Xuyi county of China was purified by a wet method then treated with NaOH and 1.0 mol/L, 2.0 mol/L and 3.0 mol/L solutions of HCl. Transmission electron microscope(TEM) and X-ray diffraction (XRD) were used to characterize treated ATP. Results showed that wet purification could remove most of impurities. Treatment by alkaline and HCl of 1.0 mol/L and 2.0 mol/L could increase purity while treatment of 3.0 mol/L hydrochloric acid could dissolve some element of ATP so much as form SiO2 and destroy fiber structure to clips. Adsorption experiments of Fe3+ and Ni2+ from aqueous solutions were done using original ATP, purified ATP and treated ATP as absorbents. Results showed that Attapulgite could adsorb metal cations in significant amounts. Sodium hydroxide activation had little influence on adsorption capacity. Influences of acid treatments to ATP on adsorption capacity varied on different concentration solutions.


2010 ◽  
Vol 63 ◽  
pp. 392-395
Author(s):  
Yoshifumi Aoi ◽  
Satoru Furuhata ◽  
Hiromi Nakano

ZrN/TiN multi-layers were synthesized by ion beam sputtering technique. Microstructure and mechanical property of the ZrN/TiN multi-layers were characterized and the relationships between microstructure and hardness of the ZrN/TiN multi-layers with various bilayer thicknesses and thickness ratios were investigated. The microstructure of multi-layers have been investigated using transmission electron microscope (TEM) and X-ray diffraction (XRD).


2010 ◽  
Vol 177 ◽  
pp. 32-36 ◽  
Author(s):  
An Rong Wang ◽  
Jian Li ◽  
Qing Mei Zhang ◽  
Hua Miao

Weak magnetic ZnFe2O4 nanoparticles were prepared by coprecipitation and treated with different concentrations of Fe(NO3)3 solution. Untreated and treated particles were studied using a vibrating sample magnetometer, transmission electron microscope, by X-ray diffraction, X-ray energy dispersive spectroscopy and X photoelectron spectroscopy. The results showed that, after treatment, the ZnFe2O4/γ-Fe2O3 forms disphase nanoparticles, with enlarged size, enhanced magnetic properties and with a surface parceled with Fe(NO3)3. The size of the particles and their magnetic properties are related to the concentration of the treatment solution. The particle size and magnetic properties could be controlled by controlling the concentration of treating solution, therefore nanoparticles can be more widely used.


Sign in / Sign up

Export Citation Format

Share Document