scholarly journals Determination of sarecycline by UPLC-MS/MS and its application to pharmacokinetic study in rats

Author(s):  
Yonghui Shen ◽  
Deru Meng ◽  
Feifei Chen ◽  
Hui Jiang ◽  
Liming Hu ◽  
...  

AbstractSarecycline is a narrow-spectrum antibiotic for the treatment of acne, which is a chronic inflammatory disease of the hair follicle sebaceous glands. In the study, UPLC-MS/MS was used to establish a rapid and accurate analytical method. The sarecycline was determined with poziotinib as internal standard (IS) in rat plasma. An ACQUITY UPLC HSS T3 column (2.1 × 100 mm, 1.8 μm) could performe chromatographic separation with the mobile phase (methanol: water of 0.1% formic acid) with gradient elution. The ions of target fragment were m/z 488.19→410.14 for sarecycline and m/z 492.06→354.55 for poziotinib, which could quantify the electrospray ionization of positive multiple reaction monitoring (MRM) mode. The linear calibration curve of the concentration range was 1–1,000 ng/mL for sarecycline with a lower limit of quantification (LLOQ) of 1 ng/mL. The mean recovery was between 82.46 and 95.85% for sarecycline and poziotinib in rat plasma. RSD for precision of inter-day and intra-day were between 3.24 and 13.36%, and the accuracy ranged from 105.26 to 109.75%. The developed and validated method was perfectly used in the pharmacokinetic study and bioavailability of sarecycline after intravenous and oral administration in rats.

2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Bo Wang ◽  
Feifei Chen ◽  
Quan Zhou ◽  
Yunfang Zhou ◽  
Deru Meng ◽  
...  

Lusutrombopag is a second oral thrombopoietin (TPO) receptor agonist that selectively acts on human TPO receptors. In the study, UPLC-MS/MS was used to establish a selective and sensitive method to determine lusutrombopag with poziotinib as IS (internal standard) in rat plasma. Samples were prepared by precipitating protein with acetonitrile as a precipitant. Separation of lusutrombopag and poziotinib was performed on a CORTECS UPLC C18 column (2.1 ∗ 50 mm, 1.6 μm). The mobile phase (acetonitrile and water containing 0.1% formic acid) with gradient elution was set at a flow rate of 0.4 ml/min. The mass spectrometric measurement was conducted under positive ion mode using multiple reaction monitoring (MRM) of m/z 592.97 ⟶ 491.02 for lusutrombopag and m/z for poziotinib (IS) 492.06 ⟶ 354.55. The linear calibration curve of the concentration range was 2–2000 ng/ml for lusutrombopag, with a lower limit of quantification (LLOQ) of 2 ng/ml. RSD of interday and intraday precision were both no more than 9.66% with the accuracy ranging from 105.82% to 108.27%. The extraction recovery of lusutrombopag was between 82.15% and 90.34%. The developed and validated method was perfectly used in the pharmacokinetic study of lusutrombopag after oral administration in rats.


2019 ◽  
Vol 15 (4) ◽  
pp. 371-378
Author(s):  
Jin Wang ◽  
Yang Chu ◽  
Xiao Li ◽  
Navaneethakrishnan Polachi ◽  
Xue-ying Yan ◽  
...  

Background: The Rumex nepalensis Spreng (RNS) is a traditional Chinese medicine containing rich anthraquinones. However, through proper investigation we have found that there were no reports on the pharmacokinetics of RNS extract in rats. </P><P> Objective: We study on the pharmacokinetic behaviors of emodin, chrysophanol and physcion after oral administration of RNS extract in rat to achieve a better understanding of further clinical application and conduct the preparation development of the herb. Methods: In the present study, a sensitive and rapid ultra-fast liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method was developed and validated to determine the three anthraquinones such as chrysophanol, emodin and physcion in rat plasma along with danthron as the internal standard (IS). The analytes and IS were separated on an Acquity UPLC HSS T3 column (100 mm × 2.1 mm, 1.8 µm) by using the mobile phase of water with 3 mM ammonium acetate and acetonitrile as gradient elution at a flow rate of 0.4 mL min -1. The detection was performed on a triple quadrupole tandem mass spectrometer equipped with electrospray ionization (ESI) by multiple reactions monitoring (MRM) of the transitions at m/z 253.1 → 225.0 for chrysophanol, 269.0 → 224.9 for emodin, 282.7→ 240.0 for physcion and m/z 239.0 → 211.0 for IS. The limit of detection and lower limit of quantification were both 2 ng mL -1 in rat plasma. Results: Good linearity of this method was obtained in the range of 2-1000 ng mL -1 , and the correlation coefficient was greater than 0.990. According to regulatory guidelines, the established method was fully validated, and the results were within acceptable limits. Conclusion: The validated method was successfully applied into a pharmacokinetic study of orally administered RNS extract in rats.


Molecules ◽  
2019 ◽  
Vol 24 (21) ◽  
pp. 3953 ◽  
Author(s):  
Zhao ◽  
Tan ◽  
Chen ◽  
Sun ◽  
Wang ◽  
...  

As a novel monoterpenoid indole alkaloid, gardneramine has been confirmed to possess excellent nervous depressive effects. However, there have been no reports about the measurement of gardneramine in vitro and in vivo. The motivation of this study was to establish and validate a specific, sensitive, and robust analytical method based on UHPLC-MS/MS for quantification of gardneramine in rat plasma and various tissues after intravenous administration. The analyte was extracted from plasma and tissue samples by protein precipitation with methanol using theophylline as an internal standard (I.S.). The analytes were separated on an Agilent ZORBAX Eclipse Plus C18 column using a gradient elution of acetonitrile and 0.1% formic acid in water at a flow rate of 0.3 mL/min. Gardneramine and I.S. were detected and quantified using positive electrospray ionization in multiple reaction monitoring (MRM) mode with transitions of m/z 413.1→217.9 for gardneramine and m/z 181.2→124.1 for I.S.. Perfect linearity range was 1–2000 ng/mL with a correlation coefficient (r2) of ≥0.990. The lower limit of quantification (LLOQ) of 1.0 ng/mL was adequate for application to different preclinical studies. The method was successfully applied for determination of gardneramine in bio-samples.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Shuang-long Li ◽  
Yong-liang Zhu ◽  
Yi Zhang ◽  
Shu-han Liu ◽  
Xiang-die Wang ◽  
...  

In our research, a straightforward UPLC-MS/MS method, with diazepam as the internal standard (IS), was proposed and acknowledged to determine the concentrations of enasidenib in rat plasma. When preparing the sample, we used acetonitrile for protein precipitation. The gradient elution method was used, and the mobile phase was acetonitrile and 0.1% formic acid. Diazepam was used as the IS. We used the Acquity UPLC BEH C18 column to separate enasidenib and IS. Under the positive ion electrospray ionization (ESI) source conditions, the mass transfer pairs of enasidenib were monitored by multiple reaction monitoring (MRM) to be m/z 474.2 ⟶ 456.1 and m/z 474.2 ⟶ 267.0, and the IS mass transfer pairs were m/z 285.0 ⟶ 154.0. Enasidenib had good linearity (r2 = 0.9985) in the concentration range of 1.0–1000 ng/mL. Besides, the values of intraday and interday precision were 2.25–8.40% and 3.94–5.46%, respectively, and the range of the accuracy values varied from −1.44 to 2.34%. Matrix effect, extraction recovery, and stability were compliant with FDA approval guidelines in terms of bioanalytical method validation. We had established a new method that had been applied to the pharmacokinetic study of enasidenib in rats.


Author(s):  
Mehmet Emrah Yaman ◽  
Alptug Atila ◽  
Tugrul Cagri Akman ◽  
Mevlut Albayrak ◽  
Yucel Kadioglu ◽  
...  

Abstract For the quantification of flurbiprofen in rat plasma, a simple UPLC-MS/MS method with high sensitivity and short retention time for flurbiprofen was developed and validated using specific parameters. Etodolac was used as internal standard. The transitions (precursor to the product) of flurbiprofen and internal standard were obtained using the electrospray ionization in the negative ion multiple reaction monitoring mode, 243.2 → 199.2, 286.2 → 212.1, respectively. For chromatographic separation, C18 column was used for the stationary phase and gradient elution was used for the mobile phase. This mobile phase consisted of a methanol (A) and a 5 mM ammonium formate solution (B), which varied at a flow rate of 0.4 mL/min. For flurbiprofen, LLOQ was determined as 5 ng/mL. Quantification of flurbiprofen in the rat plasma with a linear calibration curve of 5–5000 ng/mL (r &gt; 0.9991 for plasma) is possible with a retention time of 1.89 min. The total analysis time of the method was 3 min. The proposed method was validated. The intraday and inter-day precision (RSD%) and accuracy (RE%) were within 10% in all cases for flurbiprofen. The stability of flurbiprofen was evaluated under conditions such as short-term, long-term, autosampler and freeze/thaw. After method validation, flurbiprofen was succesfully quantified in real rat plasma samples.


2019 ◽  
Vol 15 (3) ◽  
pp. 231-242
Author(s):  
Ping Wang ◽  
Shenmeng Jiang ◽  
Yu Zhao ◽  
Shuo Sun ◽  
Xiaoli Wen ◽  
...  

Background: It is urgently needed to clarify the pharmacokinetic mechanism for the multibioactive constituents in Traditional Chinese Medicines for its clinical applications. A rapid, sensitive and reliable ultra-performance liquid chromatography-tandem mass spectrometry method was developed and validated for the simultaneous determination of Danshensu, Ferulic acid, Astragaloside IV, Naringin, Neohesperidin and Puerarin after oral administration of Naoshuantong Granule using Carbamazepine as internal standard (IS). Methods: The plasma samples were pretreated by liquid-liquid extraction method using ethyl acetate after acidification, and separated on a Waters ACQUITY UPLC® BEH C18 column (50×2.1 mm, i.d., 1.7 µm) by gradient elution with a mobile phase composing of water (containing 0.1% formic acid) and acetonitrile at a flow rate of 0.2 mL/min. Multiple reaction monitoring (MRM) mode with both positive and negative ion mode was operated using an electrospray ionization (ESI) to detect the six compounds. Result: All calibration curves showed good linearity (r>0.99) over a wide concentration range. The intra- and inter-day precision (RSD%) was below 8.4% and the accuracy (RE%) ranged from 91.1% to 107.5%. The extraction recoveries of the six analytes and IS in the plasma were more than 77.9% and no severe matrix effect was observed. Conclusion: The fully validated method was successfully applied to the pharmacokinetics of Naoshuantong Granule.


Author(s):  
Meifei Lu ◽  
Xiaojie Lu ◽  
Zheng Yu ◽  
Congcong Wen

AbstractCalycanthine is an important class of alkaloids extracted and isolated from the roots, leaves, flowers and fruits of Chimonanthus praecox. In this work, the UPLC-MS/MS method was used for determination of calycanthine in rat plasma, and the pharmacokinetics in rats were investigated. Midazolam was used as an internal standard (IS), and methanol precipitation method was used to pretreatment the rat plasma samples. Chromatographic separation was achieved on a UPLC BEH C18 (50 × 2.1 mm, 1.7 μm) column with the mobile phase of methanol- 0.1% formic acid aqueous solution with gradient elution. Multiple reaction monitoring (MRM) mode with positive ionization was applied for quantitative analysis, m/z 347.3 → 246.7 and 326.2 → 291.4 for calycanthine and IS, respectively. The results indicated that within the range of 1–200 ng/mL, linearity of calycanthine in rat plasma was good (r > 0.995), and the lower limit of quantification (LLOQ) was 1 ng/mL. Accuracy range was between 90.6 and 109.4%, precision (RSD) of calycanthine was less than 14%. The matrix effect was between 97.9% and 105.4%, the recovery was better than 85.6%. The developed UPLC-MS/MS method was successfully applied in the pharmacokinetics of calycanthine in rats after oral and intravenous administration. The absolute bioavailability of the calycanthine was 37.5% in rats.


2020 ◽  
Vol 16 (7) ◽  
pp. 960-966
Author(s):  
Qinghua Weng ◽  
Yichuan Chen ◽  
Zuoquan Zhong ◽  
Qianqian Wang ◽  
Lianguo Chen ◽  
...  

Introduction: In this study, we used UPLC-MS/MS to detect shanzhiside methylester in rat plasma, and investigated its pharmacokinetics in rats. Materials and Methods: Diazepam was utilized as an internal standard (IS), and acetonitrile precipitation method was used to process the plasma samples. Chromatographic separation was achieved using a UPLC BEH C18 column using mobile phase of methanol-0.1 % formic acid with gradient elution. Electrospray ionization (ESI) tandem mass spectrometry in multiple reaction monitoring (MRM) mode with positive ionization was applied. Results: The results indicated that within the range of 5-4000 ng/mL, linearity of shanzhiside methylester in rat plasma was acceptable (r>0.995), and the lower limit of quantification (LLOQ) was 5 ng/mL. Intra-day and inter-day precision RSD of shanzhiside methylester in rat plasma were lower than 14%. Accuracy range was between 87.3 % and 109.1 %, and matrix effect was between 99.2% and 106.3%. Conclusion: The method was successfully applied in the pharmacokinetics of shanzhiside methylester in rats after intravenous administration.


Author(s):  
Ying Xue ◽  
Ziteng Wang ◽  
Weimin Cai ◽  
Xin Tian ◽  
Shuaibing Liu

Abstract Ticagrelor is recommended for management of patients with acute coronary syndromes. Green tea is one of the most popular beverages in China and around the world. Their concomitant use is unavoidable. In this study, a selective and sensitive liquid chromatography–tandem mass spectrometry method for the simultaneous determination of plasma concentrations of ticagrelor, its two metabolites and four major constituents of tea polyphenols (TPs) in rats was developed for co-administration study of ticagrelor and TPs. Diazepam was used as internal standard (IS). Plasma samples were extracted employing a liquid–liquid extraction technique. Chromatographic separation was carried out on a Kinetex C18 column (2.1 × 75 mm, 2.6 μm) by gradient elution using 0.1% formic acid in water, acetonitrile and methanol. Seven analytes and IS were detected by a mass spectrometer with both positive and negative ionization by multiple reaction monitoring mode. The method was fully validated to be reliable and reproducible in accordance with food and drug administration (FDA) guidelines on bioanalytical method validation. The method was then successfully applied for pharmacokinetic study of ticagrelor, its two metabolites and four major constituents of TPs in rat plasma after oral administration of ticagrelor and tea polyphenol extracts.


2020 ◽  
pp. 1-5
Author(s):  
Jianbo Li ◽  
Yujie Hu ◽  
Yajin Wu ◽  
Tiantian Feng ◽  
Congcong Wen ◽  
...  

Abstract Palmatine is a compound with good water solubility extracted from Coptis chinensis, Fibraurea recisa Pierre, Cortex Phellodendri Chinensis. Palmatine has good antibacterial activity and mainly used for the treatment of bacterial dysentery, gynecological inflammation, surgical infection, and conjunctivitis. It has anti-diabetic, anti-oxidant, and cognitive-enhancing activities. In this study, we used UPLC-MS/MS to determinate palmatine in rat plasma, and investigated its pharmacokinetics. Coptisine was utilized as an internal standard (IS), and acetonitrile precipitation method was used to process the plasma samples. Chromatographic separation was achieved using a UPLC BEH C18 column using mobile phase of acetonitrile- 0.1% formic acid with gradient elution. Electrospray ionization (ESI) tandem mass spectrometry in multiple reaction monitoring (MRM) mode with positive ionization was applied. The results indicated that within the range of 1–500 ng/mL, linearity of palmatine in rat plasma was acceptable (r > 0.995), and the lower limit of quantification (LLOQ) was 1 ng/mL. Intra-day and inter-day precision RSD of palmatine in rat plasma were less than 14%. Accuracy range was between 93.7 and 107.1%, and matrix effect was between 101.6 and 109.4%. The method was successfully applied in the pharmacokinetics of palmatine in rats after oral and intravenous administration. The absolute bioavailability of the palmatine was 15.5% in rats.


Sign in / Sign up

Export Citation Format

Share Document