scholarly journals HPLC-UV method for quantification of favipiravir in pharmaceutical formulations

Author(s):  
İbrahim Bulduk

AbstractFavipiravir (FVP), a pyrazine analog, has shown antiviral activity against a wide variety of viruses. It is considered to be worth further investigation as a potential candidate drug for COVID-19. It is not officially available in any pharmacopoeia. A rapid, simple, precise, accurate, and isocratic high performance liquid chromatography (HPLC) method has been developed for routine quality control of favipiravir in pharmaceutical formulations. Separation was carried out by C18 column. The mobile phase was a mixture of 50 mM potassium dihydrogen phosphate (pH 2.3) and acetonitrile (90:10, v/v) at a flow rate of 1 mL min−1. The ultraviolet (UV) detection and column temperature were 323 nm, and 30 °C, respectively. The run time was 15 min under these chromatographic conditions. Excellent linear relationship between peak area and favipiravir concentration in the range of 10–100 μg mL−1 has been observed (r2, 0.9999). Developed method has been found to be sensitive (limits of detection and quantification were 1.20 μg mL−1 and 3.60 μg mL−1, respectively), precise (the interday and intraday relative standard deviation (RSD) values for peak area and retention time were less than 0.4 and 0.2%, respectively), accurate (recovery, 99.19–100.17%), specific and robust (% RSD were less than 1.00, for system suitability parameters). Proposed method has been successfully applied for quantification of favipiravir in pharmaceutical formulations.

Jurnal MIPA ◽  
2015 ◽  
Vol 4 (2) ◽  
pp. 148
Author(s):  
Lungguk Sitorus ◽  
Julius Pontoh ◽  
Vanda Kamu

Metode HPLC fase terbalik dengan kolom Grace Smart RP 18 5µ dapat digunakan untuk memisahkan dan menentukan konsentrasi asam-asam organik. Metode ini diaplikasikan suhu kolom 40 oC dan dideteksi pada panjang gelombang 210 nm dengan kalium dihidrogenfosfat (pH 2,8) sebagai fase gerak. Metode ini telah digunakan untuk menentukan asam-asam organik seperti asam malat, asam askorbat, asam laktat, asam asetat, asam sitrat, asam piroglutamat, dan asam fumarat.Reverse phase HPLC method using Grace smart RP 18 5µ can used to separating and calculating concentration of organic acid. This method did on 40 0C column temperature and detected on wavelength 210 nm with potassium dihydrogen phosphate (pH 2.8) as mobile phase. Determining of organic acids such as malic acid, ascorbic acid, lactic acid, acetic acid, citric acid, pyroglutamic acid and fumaric acid.


2019 ◽  
Vol 9 (18) ◽  
pp. 3711 ◽  
Author(s):  
Md Abdul Wazed ◽  
Mohammed Farid

Osteopontin (OPN) is a multifunctional whey protein which has recently received much attention for possibly applications in fortifying infant milk formula (IMF) with its bioactivity. However, to date, there is no established high-performance liquid chromatography (HPLC) method to quantify this protein in milk or IMF. In this study, a rapid, simple, isocratic and reliable reversed-phase HPLC method was developed and validated to quantify the OPN in IMF. A C18 column (4.6 × 150 mm × 5 micron) was employed with 20% of 0.1% trifluoroacetic acid (TFA) and 80% of 60% acetonitrile in 0.1% TFA for 10 min detected at 214 nm. The flow rate was 0.3 mL/min with an injection volume of 10 µL. The column temperature was 40 °C, and the peak appeared after 4 min. The validation was based on the system suitability, linearity (r2 = 0.999), limit of detection (LOD) (0.14 mg/L), limit of quantitation (LOQ) (0.41 mg/L), precision (% relative standard deviation (RSD) < 0.2), recovery (% RSD < 3) and robustness. The results confirm that the method developed is suitable for OPN determination in IMF.


Author(s):  
Sv Saibaba ◽  
Shanmuga Pandiyan P

Objective: To develop and validate reverse phase-high performance liquid chromatographic method for estimation of olanzapine in bulk and tablet dosage form.Methods: Chromatographic analysis was performed on XTerra C18 (150×3.5 mm inner diameter, 5 μm) column using a mobile phase consisting of buffer (potassium dihydrogen phosphate) and methanol (45:55% v/v) with a flow rate of 0.6 ml/minutes. The detection was carried out at 247 nm.Results: The calibration curve of olanzapine was linear in the range of 30-70 μg/ml. The mean % assay of marketed formulation was found to be 100.2%, and % recovery was observed in the range of 98-102%. Relative standard deviation for the precision study was found <2%.Conclusion: The developed method is simple, precise and rapid, making it suitable for estimation of olanzapine in bulk and tablet dosage form.Keywords: Olanzapine, Reverse phase-high performance liquid chromatographic, Validation.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Gurinder Singh ◽  
Roopa S. Pai

A rapid reversed-phase high performance liquid chromatography (RP-HPLC) method was developed for the determination of trans-resveratrol (t-RVT) in PLGA nanoparticle formulation. A new formulation of t-RVT loaded PLGA nanoparticles (NPs) with potential stealth properties was prepared by nanoprecipitation method in our laboratory. The desired chromatographic separation was achieved on a Phenomenex C18 column under isocratic conditions using UV detection at 306 nm. The optimized mobile phase consisted of a mixture of methanol: 10 mM potassium dihydrogen phosphate buffer (pH 6.8): acetonitrile (63 : 30 : 7, v/v/v) at a flow rate of 1 mL/min. The linear regression analysis for the calibration curves showed a good linear correlation over the concentration range of 0.025–2.0 μg/ml, with determination coefficients, R2, exceeding 0.9997. The method was shown to be specific, precise at the intraday and interday levels, as reflected by the relative standard deviation (RSD) values, lower than 5.0%, and accurate with bias not exceeding 15% and percentage recovery was found to be in the range between 94.5 and 101.2. The limits of detection and quantification were 0.002 and 0.007 μg/ml, respectively. The method was successfully applied for the determination of t-RVT encapsulation efficiency.


Author(s):  
Sangameshwar B. Kanthale ◽  
Sanjay S. Thonte ◽  
Sanjay S. Pekamwar ◽  
Debarshi Kar Mahapatra

A very simple, precise, economical, accurate, robust, and reproducible reverse phase-high-performance liquid chromatography method along with stability indicating attributes has been developed for estimating of prucalopride succinate (PRU) in both bulk and tablet formulation (PRUVICT 2). The estimation of the solutes was performed on a Grace C18 column of dimension 150 mm × 4.6 mm, 5 μm. PRU was eluted with acetonitrile: 0.02 M potassium dihydrogen phosphate in the ratio of 20:80 v/v in a 10 min isocratic mode at a flow rate of 1 ml/min at 30°C column temperature and monitored at a wavelength of 277 nm. The retention time of PRU was found to be 5.416 minutes. The Q2b validation of the analytical method revealed good linearity over the concentration range 2–12 μg/mL for IVA with r2 of 0.999. The mean recovery % over the three tested ranges of 50%, 100%, and 150% were found to be 100.173%, 99.077%, and 98.575%, respectively. In intra-day variability study, the % RSDs was detected to be 0.754, 1.032, and 0.482 whereas the inter-day variability study demonstrated % RSDs of 0.797, 0.559, and 0.524, respectively. The acid, alkali, boiled water, hydrogen peroxide, dry heat, and UV radiations based stress studies presented the formation of a variety of characteristic degradation products. The developed analytical method may be employed for the routine analysis of PRU in bulk and tablet formulations.


Author(s):  
R Vijay Amirtharaj ◽  
S Lavanya

A simple, sensitive, precise, selective reverse phase high performance liquid chromatographic method was developed and validated for erlotinib hydrochloride in tablet dosage form.(0.02M)The separation was achieved on C18 column (150mm×4.6mm.i.d.,5.0μm) using potassium dihydrogen phosphate: acetonitrile in the ratio 50:50v/v as mobile phase having pH 4.5 was adjusted with methanol and flow rate 1ml/min. Detection was carried out using a UV detector at 248nm. The column temperature was adjusted at 30ᵒC. The method was validated for precision, linearity and range, stability and robustness. The developed and validated method was successfully applied for the quantitative analysis of ERLONAT tablets. The total chromatographic analysis time per sample was about 7min with Erlotinib eluting at 6.547min.Validation studies demonstrated that this HPLC method is simple, specific, rapid, reliable and reproducible. The standard curves were linear over the concentration ranges, 88.32- 132.48μg/ml for erlotinib. The high recovery confirms the suitability of the proposed method for the determination of Erlotinib in ERLONAT tablets. The results of analysis have been validated according to ICH guideline requirements. The method can be applied for Erlotinib hydrochloride tablets.


2019 ◽  
Vol 11 (1) ◽  
pp. 94
Author(s):  
Swati Sahani ◽  
Vandana Jain

Objective: The objective of this study was to develop and validate a novel, simple, rapid, precise and accurate reversed-phase high performance liquid chromatographic (RP-HPLC) method for simultaneous quantitative estimation of berberine, quercetin, and piperine in Ayurvedic formulation.Methods: The chromatographic separation was achieved using a stationary phase C18 shim-pack (150 mm x 4.6 mm, 5µ) column and mobile phase consisted of acetonitrile: 0.04 M potassium dihydrogen phosphate buffer (pH 3.0 adjusted using orthophosphoric acid) in a ratio of 65:35 v/v, with a flow rate of 1 ml/min and UV detection at 255 nm.Results: The retention time of berberine, quercetin, and piperine were found to be 2.7, 3.0 and 6.3 min respectively. Linearity for berberine, quercetin, and piperine were found in the range of 12-28 µg/ml. All calibration curve showed good linear correlation coefficients (r2˃ 0.999) within the tested ranges. Mean percent recoveries for berberine, quercetin, and piperine were found to be within the acceptance limits (98-120%). The percent relative standard deviation (% RSD) for precision was found to be less than 2% which indicates method is precise.Conclusion: The developed method is novel, simple, precise, accurate and can be used for quantitative analysis and quality control of the raw material as well as other commercial formulations containing these three markers.


Author(s):  
Kumar S. Ashutosh ◽  
Debnath Manidipa ◽  
Rao J.V.L.N. Seshagiri ◽  
Sankar D. Gowri

This paper is concern with a reverse phase high performance liquid chromatography (RP-HPLC) bio-analytical method development and validation for Prasugrel in human plasma using photo diode array detector (PDA detector). The HPLC separation was carried out in an isocratic mode on an X-Terra C18 column (4.6 x 150 mm; 5 μm) with a mobile phase consisting of potassium dihydrogen phosphate [pH 3.0] and acetonitrile in the ratio of 30:70 v/v at a flow rate of 1.0 mL/min. The run time was maintained for 5 mins and the detection was monitored at 210 nm. The percentage recovery was found 99.61-100.06 in human plasma. This reveals that the method is quite accurate. The linearity was found 15-40 μg/mL in human plasma. The inter-day and intra-day precision in plasma was found within the limits. The lower limit of quantification (LLOQ) obtained by the proposed method was 0.05 μg/mL. The percentage relative standard deviation (%RSD) obtained for the drug spiked in plasma for stability studies were less than 2 %.Kathmandu University Journal of Science, Engineering and TechnologyVol. 13, No. 1, 2017, Page: 65-75


2007 ◽  
Vol 90 (5) ◽  
pp. 1250-1257 ◽  
Author(s):  
Alaa EL-Gindy ◽  
Samy Emara ◽  
Heba Shaaban

Abstract A high-performance liquid chromatographic (HPLC) method was developed for determination of oxyphenonium bromide (OX) and its degradation product. The method was based on the HPLC separation of OX from its degradation product, using a cyanopropyl column at ambient temperature with mobile phase of acetonitrile25 mM potassium dihydrogen phosphate, pH 3.4 (50 + 50, v/v). UV detection at 222 nm was used for quantitation based on peak area. The method was applied to the determination of OX and its degradation product in tablets. The proposed method was also used to investigate the kinetics of the acidic and alkaline degradation of OX at different temperatures, and the apparent pseudo first-order rate constant, half-life, and activation energy were calculated. The pH-rate profile of the degradation of OX in Britton-Robinson buffer solutions within the pH range 212 was studied.


2014 ◽  
Vol 20 (1) ◽  
pp. 109-114
Author(s):  
Kulandaivelu Karunakaran ◽  
Gurusamy Navaneethan ◽  
Kuppanagounder Pitchaimuthu

A new method for the simultaneous determination of paracetamol (PR) and lornoxicam (LR) has been developed by reversed phase HPLC from the combination drug product. The separation achieved on C18 column using acetonitrile and 0.02 M potassium dihydrogen phosphate was in the ratio of 35:65 (v/v) as mobile phase at a flow rate of 1.0 mL/min. Both the components were monitored at a single wavelength at 260 nm and the column temperature was maintained at 30?C throughout the analysis. A linear response was found in the concentration range of 125-375 ?g/mL for PR and 2-6 ?g/mL for LR, with the correlation coefficient of more than 0.999. Although the tablet contained a high dose of PR (500 mg) and a low dose of LR (8 mg), the single HPLC method was developed and the intra as well as inter day precision was obtained at less than 2% of RSD. The accuracy results obtained were between 98% and 102%. The drug was intentionally degraded under acidic, basic, peroxide, thermal, and photolytic conditions. The major degradation observed for both PR and LR under peroxide condition indicated that the drug product is susceptible to oxidation. The degraded peaks were properly resolved from PR and LR. Hence, the method is stability indicating.


Sign in / Sign up

Export Citation Format

Share Document