Moment carrying capacity of RSCC beams incorporating alccofine and fly ash

2021 ◽  
Author(s):  
Bode Venkata Kavyateja ◽  
J. Guru Jawahar ◽  
Chundupalle Sashidhar ◽  
Narasimha Reddy Panga

AbstractThis paper analyses the structural behavior of reinforced self-compacting concrete beams under two-point loading. A total number of five beams were cast with varying quantities of alccofine (i.e., 0, 5, 10, and 15%) and constant dosage of fly ash (i.e., 25%) and tested for examining the load-deflection curves and ultimate moment carrying capacity of reinforced self-compacting concrete beams. From obtained experimental results, it was found that the load-carrying capacity was increased when the beam with the addition of alccofine and fly ash is compared with the normal concrete beam. The experimental obtained ultimate strength values were compared with theoretically predicted values using IS 456-2000, ACI 318-11, and CSA A23.3-04 codes.

2021 ◽  
Vol 9 (ICRIE) ◽  
Author(s):  
Ali I. Salahaldin ◽  
◽  
Muyasser M. Jomaa’h ◽  
Dlovan M. Naser ◽  
◽  
...  

One of the most common methods of strengthening, rehabilitation, or repairing of structural lightweight concrete (LWC) elements is the external carbon fiber reinforced polymer (CFRP) strips. This paper presents an experimental study on the flexural behavior of reinforced concrete beams which comprise lightweight aggregate concrete, in different proportions, strengthened by CFRP sheets. The experimental program included six specimens with a 1500mm effective span. Two of the specimens were normal concrete beams. Another two samples were lightweight beams with a 50% aggregate replacement with pumice. The last two specimens were lightweight concrete beams with a 75% aggregate replacement with pumice. These beams were casted and tested twice under a two-point load application, once before strengthening and the other after that. The experimental results show that full strengthening of the beams along with their entire length, increase in load-carrying capacity by 75%, 113%, and 107% for normal concrete beam, (50% aggregate replacement) LWC beam, and (75% aggregate replacement) LWC beam respectively. While the middle-third strengthening of the beams shows an increase in load-carrying capacity by 64%, 72%, and 57% for normal concrete beam, (50% aggregate replacement) LWC aggregate beam, and (75% aggregate replacement) LWC beam respectively. The strength of the two types of LWC beams was almost the same and it is about 85% of the concrete beam with normal weight.


2015 ◽  
Vol 23 (4) ◽  
pp. 1-7 ◽  
Author(s):  
Jamal Khatib ◽  
Adrian Jefimiuk ◽  
Sammy Khatib

Abstract The flexural properties of reinforced concrete beams containing expanded glass as a partial fine aggregate (sand) replacement are investigated. Four concrete mixes were employed to conduct this study. The fine aggregate was replaced with 0%, 25%, 50% and 100% (by volume) expanded glass. The results suggest that the incorporation of 50% expanded glass increased the workability of the concrete. The compressive strength was decreasing linearly with the increasing amount of expanded glass. The ductility of the concrete beam significantly improved with the incorporation of the expanded glass. However, the load-carrying capacity of the beam and load at which the first crack occurs was reduced. It was concluded that the inclusion of expanded glass in structural concrete applications is feasible.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sachin B.P. ◽  
N. Suresh

Purpose The purpose of the paper is to study the effect of elevated temperature on load carrying capacity of reinforced self compacting concrete beams and the performance of deteriorated beams after retrofitting by GFRP sheets. The reinforced beams which were exposed to sustained elevated temperature and tested for flexural load-carrying capacity. Further deteriorated beams (exposed from 500°C to 800°C) were re-strengthened by adopting retrofitting with GFRP sheets. Design/methodology/approach The investigation includes the concrete specimens, i.e. cubes of 150 mm, cylinders of size 150 mm dia with 300 mm height and beams of 150 × 150 × 1,100 mm, reinforced with minimum tension reinforcement according to IS 456–2000. The specimens were subjected to elevated temperature from 300°C to 800°C with an interval of 100°C for 2 h. The residual compressive strength, modulus of elasticity, load at first crack of beams and load-carrying capacity of beams for 5-mm deflection were measured before and after retrofitting. Findings The result shows that there is a gain in residual compressive strength at 300°C and beyond which it decreases. The modulus of elasticity, load at first crack and load-carrying capacity of beams reduces continuously with an increase in temperature. The decrease in load-carrying capacity of beams is observed from 27.55% and up to 38.77% between the temperature range of 500°C–800°C and after the retrofitting of distressed beams, the load carrying capacity increases up to 24.48%. Originality/value Better performance was observed with retrofitting by GFRP sheets when the specimens were distressed due to elevated temperatures.


2018 ◽  
Vol 4 (7) ◽  
pp. 1595
Author(s):  
Nibras Abbas Harbi ◽  
Amer F. Izzet

The performance of composite prestressed concrete beam topped with reinforced concrete flange structures in fire depends upon several factors, including the change in properties of the two different materials due to fire exposure and temperature distribution within the composition of the composite members of the structure. The present experimental work included casting of 12 identical simply supported prestressed concrete beams grouped into 3 categories, depending on the strength of the top reinforced concrete deck slab (20, 30, and 40 MPa). They were connected together by using shear connector reinforcements. To simulate the real practical fire disasters, 3 composite prestressed concrete beams from each group were exposed to high temperature flame of 300, 500, and 700°C, and the remaining beams were left without burning as reference specimens. Then, the burned beams were cooled gradually by leaving them at an ambient lab condition, after which the specimens were loaded until failure to study the effect of temperature on the residual beams serviceability, to determine the ultimate load-carrying capacity of each specimen in comparison with unburned reference beam, and to find the limit of the temperature for a full composite section to remain composite. It was found that the exposure to fire temperature increased the camber of composite beam at all periods of the burning and cooling cycle as well as the residual camber, along with reduction in beam stiffness and the modulus of elasticity of concrete in addition to decrease in the load-carrying capacity.


Author(s):  
Paolo Foraboschi

Renovation, restoration, remodeling, refurbishment, and retrofitting of build-ings often imply modifying the behavior of the structural system. Modification sometimes includes applying forces (i.e., concentrated loads) to beams that before were subjected to distributed loads only. For a reinforced concrete structure, the new condition causes a beam to bear a concentrated load with the crack pattern that was produced by the distributed loads that acted in the past. If the concentrated load is applied at or near the beam’s midspan, the new shear demand reaches the maximum around the midspan. But around the midspan, the cracks are vertical or quasi-vertical, and no inclined bar is present. So, the actual shear capacity around the midspan not only is low, but also can be substantially lower than the new demand. In order to bring the beam capacity up to the demand, fiber-reinforced-polymer composites can be used. This paper presents a design method to increase the concentrated load-carrying capacity of reinforced concrete beams whose load distribution has to be changed from distributed to concentrated, and an analytical model to pre-dict the concentrated load-carrying capacity of a beam in the strengthened state.


2020 ◽  
pp. 002199832097373
Author(s):  
Fares Jnaid

This paper investigates the effects of different parameters on the live load carrying capacity of concrete beams reinforced with FRP bars. The author performed a parametric study utilizing an innovative numerical approach to inspect the effects of multiple variables such as reinforcement ratio, concrete compressive strength, span to depth ratio, FRP type, and bar diameter on load carrying capacity of FRP reinforced concrete beams. This study concluded that unless the span to height ratio is smaller than 8, tension-controlled sections are impractical as they do not meet code requirements for serviceability. In addition, it is recommended to use higher reinforcement ratios when using larger span to depth ratios and/or when using CFRP reinforcing bars. Moreover, larger number of bars with small diameter is more practical than fewer large diameter bars. Furthermore, this research suggests that increasing the concrete compressive strength is associated with a significant increase in the ultimate flexural capacity of FRP reinforced beams.


2018 ◽  
Vol 183 ◽  
pp. 02002 ◽  
Author(s):  
Jacek Selejdak ◽  
Roman Khmil ◽  
Zinoviy Blikharskyy

The article is devoted to an experimental research of the strength of reinforced concrete beams, and its dependence on a simultaneous influence of a corrosion environment and a loading factor. The tests have been carried out upon reinforced concrete specimens of 2100×200×100 mm size, with a regular reinforcement. The beams are of a span equaling to 1,9m with different reinforcing ratio of beams. The acid environment, namely 10 % H2SO4, was taken as a model of an aggressive environment. Reinforced concrete beams have been tested with and without the co-action of the aggressive environment and loading factor. Beams, which underwent a simultaneous action of the corrosive environment and loading, were loaded to a level 0.7 of its load-carrying capacity. The load-carrying capacity in aggressive environment in all the beams of all the series was achieved in 46-60 days. The influence of the simultaneous action of the aggressive environment and loading on the strength of reinforced-concrete beams has been described in the following work. It is necessary to note that the design code of Ukraine does not allow determining load carrying capacity of the beams affected by corrosion with simultaneous influence of loading with adequate accuracy. The analysis of experimental data has been done and the main directions of the design code’s correction have been formulated.


Author(s):  
Ali Alavizadeh-Farhang ◽  
Johan Silfwerbrand

To study the structural responses of plain and steel fiber-reinforced concrete pavements under combined mechanical and thermal loads, two test series have been conducted with plain and steel fiber-reinforced concrete beams. The magnitude and duration of the differences in the induced stresses caused by traffic load and a positive nonlinear temperature gradient (the top surface was warmer than the bottom surface during the day) may lead to some relaxation of thermal stresses and subsequently increase the load-carrying capacity. Considering the loss of support contact in the interior part of the concrete pavement, the experimental study of combined loading with restrained concrete beams may provide some insight and an indication of whether the superposition of stresses is a proper approach. The beams were subjected to solely thermal, solely mechanical, and combined thermal and mechanical loads while the rotation of the beam at supports was prevented. The results of tests conducted with both plain and steel fiber-reinforced beams showed that the superposition of stresses under combined loading before cracking gave a satisfactory estimation of the load-carrying capacities. The results also showed that the effect of relaxation of stresses due to short-term thermal loads was not noticeable in the load-carrying capacity achieved in tests with combined thermal and mechanical loads. On the contrary, a tendency for reduction of the load-carrying capacity was observed at higher thermal gradients. In addition, the overall structural responses of steel fiber-reinforced concrete beams under mechanical load and a nonlinear temperature gradient combined were similar to the responses of plain concrete beams up to the cracking stage. However, the release of thermal stresses due to cracking and the considerable residual load-carrying capacity after cracking were the most important observations for steel fiber-reinforced concrete beams.


Sign in / Sign up

Export Citation Format

Share Document