Investigations on the adaptability of maize lines and hybrids to low temperature and cadmium

2005 ◽  
Vol 53 (2) ◽  
pp. 183-196 ◽  
Author(s):  
G. Szalai ◽  
M. Pál ◽  
E. Horváth ◽  
T. Janda ◽  
E. Páldi

In the course of the Maize Consortium Project, investigations were made on the defence mechanisms employed by maize against various abiotic stress factors (low temperature, cadmium) and on the effects exerted by two compounds (S-methylmethionine, salicylic acid) capable of improving the stress resistance of plants to certain abiotic stresses. Salicylic acid (SA) was found to inhibit the uptake of cadmium (Cd), but caused damage to the roots, including a reduction in the activity of phytochelatin synthase (PCS), which meant that preliminary treatment with SA aggravated the damaging effect of Cd. It was also proved that as the result of 2-day treatment with Cd, there was a continuous rise in the Cd level in the plants, more Cd being accumulated in young leaves than in older ones. The PCS activity increased greatly after 24 hours, both in the leaves and in the roots, declining again after 2 days. The effect of SA was examined in both the hybrids and their parental lines, and the effect of this compound on the intensity of alternative respiration was also investigated. A comparison of chilling tolerance data and antioxidant enzyme activity indicated that these two parameters were not directly correlated to each other, i.e. antioxidant enzyme activity values could not be used to draw reliable conclusions on the chilling tolerance of maize lines and hybrids. With regard to the interaction between alternative respiration and salicylic acid, it was proved that exogenous hydrogen peroxide caused a similar increase in the ratio of alternative respiration to that observed after salicylic acid treatment. Abbreviations: SA, salicylic acid; Cd, cadmium; PCS, phytochelatin synthase; SMM, S-methylmethionine; PCs, phytochelatins; PAR, photosynthetically active radiation; TTC, triphenyl tetrazolium chloride; KCN, potassium cyanide; PSII, 2nd photochemical system; POD, guaiacol peroxidase; APX, ascorbate peroxidase; GR, glutathione reductase

2013 ◽  
Vol 61 (1) ◽  
pp. 79-87 ◽  
Author(s):  
N. Sajedi ◽  
M. Boojar

In the present study, three dry land wheat cultivars, Azar 2, Sardary and Rasad, were tested for antioxidant enzyme activity, proline, malondialdehyde (MDA) and dityrosine (DT) content and grain yield after treatment with selenium and salicylic acid (SA). A factorial field experiment was carried out based on a completely randomized block design with three replicates. The experimental factors were three levels of salicylic acid (without SA; seed priming with 0.5 mM SA; seed priming + spraying with 1 mM SA) and two levels of selenium (0 and 20 g/ha). Significant increases in the activity of the superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) enzymes and in the proline level were observed after treatment in the leaves of the three genotypes investigated, but this was associated with reduced MDA and DT content. The application of SA as seed priming and the foliar application of Se also increased the grain yield. These results suggest that cultivars exhibiting high antioxidant enzyme activity and proline content under dry land conditions may provide better drought tolerance in wheat.


Author(s):  
Esin Dadasoglu ◽  
Melek Ekinci ◽  
Raziye Kul ◽  
Mostafakamal Shams ◽  
Metin Turan ◽  
...  

Background: Salinity is one of the environmental stress factors that restrict the crop production by endangering agricultural areas. Nitric oxide (NO) protects plants from damage caused by oxidative stress conditions in various biological ways. Methods: In this greenhouse investigation during 2018, pea plants were irrigated with three levels of NaCl (0, 50 and 100 mM) solutions. NO solutions were prepared with three different doses (0, 75 and 100 µM SNP). These solutions were applied to the seeds before sowing and then to the leaves of the pea cultivars. The study was conducted to analyze the impact of NO on growth, malondialdehyde (MDA), hydrogen peroxide (H2O2), antioxidant enzyme activity and nutrient uptake in two pea cultivars under salinity conditions. Result: Salinity reduced fresh-dry weight, relative water content (RWC), and chlorophyll a and b content of pea. However, NO enhanced these parameters under salt stress. Salinity increased tissue electrical conductance (TEC), H2O2 and MDA content, which were decreased by combined application of NaCl and NO. Salinity caused an increase in antioxidant enzyme activity in pea and NO made a significant improvement in their activities under salinity conditions. Salinity treatments decreased the ratio of K+/Na+ and Ca2+/Na+ in both cultivars, and application of NO elevated them as compared to the control under salt stress. In conclude, exogenous NO treatment could help pea to tolerate salinity stress by increasing the chlorophyll content and regulating antioxidant enzyme activity and nutrient uptake.


2018 ◽  
Vol 69 (6) ◽  
pp. 587 ◽  
Author(s):  
Yi Wang ◽  
Jing Li ◽  
Wanrong Gu ◽  
Qian Zhang ◽  
Lixin Tian ◽  
...  

The important plant growth regulator 5-aminolevulinic acid (ALA) could promote low-temperature stress tolerance of many plants; however, the underlying mechanisms remain to be elucidated. We investigated the effects of exogenously applied ALA on seedling morphology, antioxidant enzyme activity and photosynthetic capacity of maize (Zea mays L.) seedlings under low-temperature stress. Two cultivars, low-temperature-sensitive cv. Suiyu 13 (SY13) and low-temperature-tolerant cv. Zhengdan 958 (ZD958), were subjected to four treatments: low-temperature without ALA treatment, low-temperature after ALA treatment, normal temperature without ALA treatment, and normal temperature after ALA treatment. Plant morphological growth, proline content, antioxidant enzyme activity and photosynthetic capacity were determined. ALA treatment significantly decreased the inhibitory effects of low-temperature stress on seedling dry weight and increased proline accumulation under low temperatures in ZD958. Pre-application of ALA significantly improved superoxide dismutase and catalase activities in SY13 under low-temperature stress. Furthermore, treating maize seedlings with ALA resulted in significant enhancement of ribulose-1,5-bisphosphate (RuBP) carboxylase activity under low-temperature stress in both cultivars. Pre-treatment with ALA relieved the damage caused by low-temperature stress to maize seedlings, particularly in the low-temperature-sensitive cultivar. Therefore, ALA at appropriate concentrations may be used to prevent reductions in maize crop yield due to low-temperature stress.


2020 ◽  
Author(s):  
Lisa Heyman ◽  
Antonios Chrysargyris ◽  
Kristof Demeestere ◽  
Nikolaos Tzortzakis ◽  
Monica Höfte

Abstract BackgroundClimate change will increase the occurrence of plants simultaneously suffering drought and pathogen stress. Although it is well-known that drought can alter the way plants respond to pathogens, knowledge about the effect of concurrent drought and biotic stress in grapevine is scarce. This is especially true for Plasmopara viticola, the causal agent of grapevine downy mildew. This research addresses how vines with different drought tolerance respond to the challenge with P. viticola, drought stress or their combination, and how one stress affects the other. ResultsArtificial inoculation was performed on two cultivars, exposed to full or deficit irrigation, in the Mediterranean climate of Cyprus. In parallel, leaf disks from these plants were inoculated in controlled conditions. Leaves were sampled at an early infection stage to determine the influence of the single and combined stresses on oxidative parameters, chlorophyll, and phytohormones. Under irrigation, the local Cypriot cultivar Xynisteri was more susceptible to P. viticola than the drought-sensitive Chardonnay. The successful infection by P. viticola at 1.5 days post inoculation was associated with high levels of indole-3-acetic acid (IAA), salicylic acid (SA), jasmonic acid (JA), and proline and strong decreases in antioxidant enzyme activity. Drought, on the other hand, triggered the accumulation of IAA and abscisic acid (ABA), which antagonized JA and SA. Exposure to drought stress increased the susceptibility to P. viticola of the leaves inoculated in controlled conditions. Conversely, both cultivars showed resistance against P. viticola when inoculated in planta under continued deficit irrigation. Despite their resistance, the pathogen-associated responses in IAA, antioxidant enzyme activity, and proline still occurred in these drought-stressed plants. Surprisingly, abscisic acid, rather than the generally implicated jasmonic and salicylic acid, seemed to play a prominent role in this resistance. ConclusionsDrought exposure increased the susceptibility of in vitro inoculated leaves. Conversely, deficit irrigation induced resistance to P. viticola in both Chardonnay and Xynisteri when inoculated in planta. ABA, rather than JA and SA, was implicated in this resistance. The irrigation-dependent susceptibility highlights that the changing climate and the practices used to mitigate its effects, may have a profound impact on plant pathogens.


Sign in / Sign up

Export Citation Format

Share Document