General and specific combining ability of in vitro doubled haploid maize lines in the field

2010 ◽  
Vol 58 (2) ◽  
pp. 167-177
Author(s):  
T. Spitkó ◽  
L. SÁgi ◽  
J. Pintér ◽  
C. Marton ◽  
B. Barnabás

The breeding of hybrid maize now has a history of over 100 years. In 1908, George H. Shull was the first to report on the high yields, great uniformity and homogeneity of hybrids derived from a cross between two inbred lines. Following this discovery, consistent self-fertilisation over a period of six to eight generations was found to be an extremely efficient method for developing maize lines. From the mid-1970s, however, with the elaboration of the monoploid ( in vivo ) and microspore culture ( in vitro ) techniques, it became possible to develop homozygous lines within a year.With the help of an efficient plant regeneration system based on anther culture, large numbers of doubled haploid (DH) lines can be produced. In the course of the experiments the seed of DH plants selected over several years was multiplied and crossed with Martonvásár testers, after which the hybrids were included in field performance trials in three consecutive years (2005–2007). The aim was to determine whether the field performance of hybrids developed in this way equalled the mean yield of standards with commercial value. The data also made it possible to calculate the general (GCA) and specific (SCA) combining ability of the parental lines, indicating the usefulness of the parental components in hybrid combinations and expressing the extent to which a given line contributes to yield surpluses in its progeny.A total of 52 maize hybrids were evaluated in the experiments in terms of yield and grain moisture content at harvest. The combinations, resulting from crosses between 12 DH lines, one control line developed by conventional inbreeding and four testers, were found to include hybrids capable of equalling the performance of the standards, and four DH lines were identified as improving the yield level of their progeny. As the experiment was carried out on a very small number of genotypes, the results are extremely promising and suggest that, if the range of genotypes used to develop DH lines is broadened and the sample number is increased, it will be possible in the future to find maize hybrids, developed with in vitro DH parental components, that surpass the performance of commercial hybrids.

2007 ◽  
Vol 55 (3) ◽  
pp. 273-282
Author(s):  
S. Sharma ◽  
H. Chaudhary

Seventy-eight doubled haploid (DH) lines, derived from 21 elite and diverse winter × spring wheat F 1 hybrids, following the wheat × maize system, were screened along with the parental genotypes under in vitro and in vivo conditions for cold tolerance. Under in vitro conditions, the 2,3,5-triphenyl tetrazolium chloride (TTC) test was used to characterize the genotypes for cold tolerance. Based on the TTC test, only one doubled haploid, DH 69, was characterized as cold-tolerant, seven DH and five winter wheat parents were moderately tolerant, while the rest were susceptible. Analysis of variance under in vivo conditions also indicated the presence of sufficient genetic variability among the genotypes (DH lines + parents) for all the yield-contributing traits under study. The correlation and path analysis studies underlined the importance of indirect selection for tillers per plant, harvest index and grains per spike in order to improve grain yield. It was also concluded that selection should not be practised for grain weight per spike as it would adversely affect the grain yield per plant. When comparing the field performance of the genotypes with the in vitro screening parameters, it was concluded that in addition to the TTC test, comprising a single parameter, other physiological and biochemical in vitro parameters should be identified, which clearly distinguish between cold-tolerant and susceptible genotypes and also correlate well with their performance under field conditions.


2020 ◽  
Vol 56 (No. 4) ◽  
pp. 150-158
Author(s):  
Osama Zuhair Kanbar ◽  
Csaba Lantos ◽  
Paul Karumba Chege ◽  
Erzsébet Kiss ◽  
János Pauk

We investigated the anther culture (AC) efficiency of thirteen F<sub>4</sub> combinations of winter wheat (Triticum aestivum L.). The genotype dependency was assessed during the induction of the androgenic entities, i.e. embryo-like structures (ELS), regenerated-, green-, albino-, and transplanted plantlets. The number of green plantlets per 100 anthers (GP/100A) varied from 0.36 to 24.74 GP/100A with a mean of 8.31 GP/100A. Albino plantlets (AP) occurred in each combination, ranging from 0.20 to 22.80 AP/100A with an average value of 5.59 AP/100A. Between 25–87.76 doubled haploid (DH) plants per 100 acclimatised plantlets (DH/100ADP), depending on the combination, with a mean of 59.74% were recovered. We have found the highest DH production in the combinations Béres/Midas, Kalász/Tacitus, Béres/Pamier, and Premio/5009. This improves remarkably the choice of basic genetic material in subsequent crossing programmes. These observations emphasise the usability and efficiency of in vitro AC in producing a large number of DH lines for breeding and the applied researches of winter wheat. Although albinism was found in each combination, it was mitigated by the in vitro AC application.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 990B-990 ◽  
Author(s):  
Ryan L. Walker ◽  
Sunggil Kim ◽  
Javier F. Betran ◽  
Kilsun Yoo ◽  
Leonard M. Pike

Onions suffer from severe inbreeding depression, which has inhibited the development of homozygous inbred lines in breeding programs. The creation of doubled haploid (DH) lines in onion provides a unique opportunity to evaluate the utility of such lines as parents in a breeding program. For this purpose, two diallele cross experiments were conducted. The first consisted of a six-parent diallele cross using six DH lines developed at Texas A&M University. The second, a four-parent diallele cross performed with two DH lines and two inbred lines from the breeding program. Bulbs from the various crosses were evaluated for diameter, height, centers/bulb, ring thickness, number of rings/bulb, bulb weight, soluble solids content, and pungency. For some traits, general combining ability (GCA) effects explained most of the variation. However, for other traits, specific combining ability (SCA) effects predominated. For all traits, GCA and SCA were always larger than the reciprocal effects (divided into maternal and nonmaternal components). The GCA and SCA effects show an inverse correlation between the number of centers/bulb and ring thickness.


Plants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 138
Author(s):  
Ronald P. Mowers ◽  
David J. Foster

An experiment was conducted to compare estimated genetic variance for maize doubled haploid (DH) with conventional twice-selfed (S2)-line hybrids. Starting with a 4-parent population, at least 160 lines were derived using both of these methods and crossed with two inbred testers. For both inbred testers, maize hybrid grain yield and stalk lodging had higher estimated genetic variances for DH than for S2. For one of the testers, estimated grain moisture genetic variance was higher for DH, but not for the other. The DH hybrid yield distributions on both testers were flatter and had more entries in tails compared with S2 distributions. With complete homozygosity of DH lines and the subsequent increased genetic variance among lines, the expected response to yield selection is higher for DH than for S2 line hybrids.


1976 ◽  
Vol 56 (3) ◽  
pp. 467-474 ◽  
Author(s):  
S. J. PARK ◽  
E. J. WALSH ◽  
E. REINBERGS ◽  
L. S. P. SONG ◽  
K. J. KASHA

The performance of 52 doubled haploid (DH) lines from two barley crosses was compared with lines developed by the pedigree (PD) and the single seed descent (SSD) methods. The comparison was made in hill plot tests over a 2-yr period at two locations. There was no difference in grain yield, heading date and plant height between the DH populations and the populations derived by the other two breeding methods. Similar means and ranges, genetic variances and frequencies of desirable genotypes were obtained in the populations produced by the three breeding methods for grain yield, heading date and plant height. The mean grain yields of superior lines were similar for all three methods. There was no indication of deleterious effect of complete homozygosity in the DH lines. In the two crosses examined, the materials generated by the DH method were as good agronomically as those produced by the PD or SSD methods. It was concluded that the doubled haploid technique is a very useful tool for producing high yielding homozygous barley lines in a relatively short time.


2014 ◽  
Vol 39 (5) ◽  
pp. 484-488
Author(s):  
Chao XING ◽  
Lu JIN ◽  
Peng LIU ◽  
Ying RUAN ◽  
Chun-lin LIU

HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1120G-1120
Author(s):  
J. L. Jacobs ◽  
C. T. Stephens

Several growth hormone combinations and silver nitrate concentrations were examined for their effect on regeneration of different pepper genotypes. Primary leaf explants from in vitro seedlings were cultured on a revised Murashige and Skoog medium supplemented with auxin, cytokinin and 1.6% glucose. Combinations of different concentrations of indole-3-acetic acid (IAA), 0-5 mg/l, and 6-benzylaminopurine (BAP), 0-5 mg/l, were tested to determine the most effective medium for shoot primordium formation. Experiments with IAA and BAP did not result in a specific growth hormone combination appropriate for regeneration of all genotypes tested. Of the silver nitrate concentrations tested, 10 mg/l resulted in the best shoot and leaf differentiation and reduced callus formation. Differences in organogenic response of individual genotypes were evaluated on a single regeneration medium. Whole plants were regenerated from 11 of 63 genotypes examined. Based on these experiments, a reproducible regeneration system for pepper was developed with a total of 500 plants regenerated to date.


2016 ◽  
Vol 86 ◽  
pp. 49-57 ◽  
Author(s):  
Jannette Alonso-Herrada ◽  
Félix Rico-Reséndiz ◽  
Juan Campos-Guillén ◽  
Ramón G. Guevara-González ◽  
Irineo Torres-Pacheco ◽  
...  

Author(s):  
Ying Zhao ◽  
Shengnan Huang ◽  
Yun Zhang ◽  
Fengyan Shi ◽  
Xuyao Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document