Regeneration of immature and mature embryos from diverse sets of wheat genotypes using media containing different auxins

2012 ◽  
Vol 60 (2) ◽  
pp. 97-108 ◽  
Author(s):  
R. Murín ◽  
K. Mészáros ◽  
P. Nemeček ◽  
R. Kuna ◽  
J. Faragó

The effect of explant type (immature vs. mature embryos) and two auxin types (2,4-dichlorophenoxyacetic acid vs. Dicamba) on the callogenesis and plant regeneration ability of 26 wheat cultivars was studied. In general, the callus induction, plant regeneration and shoot formation frequencies were higher in mature embryo-derived cultures as compared to immature ones on media originally developed for mature wheat embryo cultures. In both culture types, the auxin Dicamba was found to be more efficient, especially when mature embryos were cultured. The separation of means using Duncan’s multiple range test revealed the best in vitro response, in terms of the frequency of callus regeneration, in the cultivar Astella for both immature and mature embryo cultures. This cultivar gave very promising results, suggesting that it could be used in the future for further tissue culture investigations and as a donor material for genetic transformation experiments in wheat. Correlation analyses revealed significant similarities between the evaluated parameters within each group (immature and mature embryo-derived cultures). However, there were no significant correlations between these two groups for most of the parameters. This suggests that the mechanism of plant regeneration in the two in vitro regeneration systems (mature vs. immature embryo culture) may be different enough to hamper the development of an optimal plant regeneration protocol for use in both systems.

2000 ◽  
Vol 51 (2) ◽  
pp. 305 ◽  
Author(s):  
Diah Azria ◽  
Prem L. Bhalla

In vitro plant regeneration from callus induced from embryos of mature seeds of 4 Australian varieties of rice was studied. Observations of callus induction on MS and N6 media indicated that MS medium supplemented with 0.5–2 mg/L of 2,4-D is suitable for callus formation from the varieties tested. Comparison of shoot initiation on medium containing BAP, BAP + NAA, and TDZ + NAA indicated that these varieties prefer BAP + NAA or TDZ + NAA in the shoot initiation medium. Partial desiccation, resulting in up to 20% loss of fresh weight of callus, significantly increased the regeneration frequency of the 4 rice varieties tested. The varieties showed varied response to number of shoots produced per callus. Regenerated shoots were rooted on plant growth regulator free medium. The plants regenerated were phenotypically normal and fertile. Our study showed that callus derived from mature embryos of these rice varieties are amenable to multiple shoot formation, and could be used for genetic transformation studies.


Author(s):  
O. V. Bychkova ◽  
L. P. Khlebova ◽  
D. V. Ereschenko

<p>Mature wheat embryo is a convenient type of explants because of its unlimited availability at any time of the year. But the regenerative capacity of the calli derived from mature embryos is low due to the peculiarities of their hormonal status. A high-performance protocol for culturing these explants is necessary to develop to use them in various areas of applied plant biotechnology. Induction and maintenance of a high rate for unorganized growth in plant cell cultures take place on a nutrient medium with high levels of an exogenous auxin, but the presence of a cytokinin is required to induce differentiation processes. We have carried out a study of the various morphogenetic processes in mature embryo cultures of three spring durum wheat genotypes, depending on the time of their cultivation on the callus induction medium. Mature embryos were cultured in the dark at 26 ± 1 °Con Murashige &amp; Skoog (MS) medium containing MS basal salts and vitamins supplemented with 0.7% agar, 3% sucrose, as well as 2 mg L<sup>-1</sup> 2,4-dichlorophenoxyacetic acid (2,4-D) (callus induction medium). For morphogenesis induction a part of calli was transferred every five days to a differentiating medium of the same composition of salts and vitamins supplemented with 0.5 mg L<sup>-1</sup> 2,4-D and 0.5 mg L<sup>-1</sup> kinetin. Cell cultures were grown in the light at 22 – 24 °C with a 16-hour photoperiod. Six variants of time intervals for callus proliferation on the induction medium have been studied (5, 10, 15, 20, 25, 30 days). A variant of cell culturegrowing without transferring to the differentiating medium was examined too. Frequencies of callus induction, morphogenesis induction and regeneration capacity (relatively morphogenetic calli) were calculated.<strong></strong></p><p>We found active callus induction was visible on the 5th – 7th day after placing explants on the MS inducing medium. The greatest level of callusogenesis (92.3%) was discovered under incubating cultures on the original medium for 30 days. After the short-term cultivation of explants on the initiating medium (for five days) new calli on the differentiating medium were not initiated. In this variant, proliferation of the before induced cell clusters was taking place. This resulted in a low frequency of callus formation (44.3%). Development of the primary callus on the inducing medium for 20 – 30 days helped to keep the competence in somatic tissues of mature embryos and generated the largest number of morphogenetic structures of different qualities. The way of morphogenesis depended on the time interval for cell culture growing on the initial medium. Rhizogenesis decreased by 25% after increasing the incubation period to 15 days. This was followed by active nodular structure formation in calli and plant regeneration. For Oasis variety and 12S2-24 line the most effective variant for the realization of regenerative capacity of morphogenetic calli was to incubate cultures on the induction medium for 15 – 20 days and then to transfer them to the differentiating medium. For Pamyati Yanchenko variety the best variant was to grow calli on the induction medium for 25 days. We have shown the significant effects of a genotype and cultivation conditions at different developmental stages of mature embryo cultures from durum wheat. The specificity of a variety began to manifest after 5 – 10 days staying on the induction medium.</p>


Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 839
Author(s):  
Dorota Weigt ◽  
Idzi Siatkowski ◽  
Magdalena Magaj ◽  
Agnieszka Tomkowiak ◽  
Jerzy Nawracała

Ionic liquids are novel compounds with unique chemical and physical properties. They can be received based on synthetic auxins like 2,4-dichlorophenoxyacetic acid or dicamba, which are commonly used hormones in microspore embryogenesis. Nevertheless, ionic liquids have not been adapted in plant in vitro culture thus far. Therefore, we studied the impact of ionic liquids on the ability to undergo microspore embryogenesis in anther cultures of wheat. Two embryogenic and two recalcitrant genotypes were used for this study. Ten combinations of ionic liquids and 2,4-dichlorophenoxyacetic acid were added to the induction medium. In most cases, they stimulated induction of microspore embryogenesis and green plant regeneration more than a control medium supplemented with only 2,4-dichlorophenoxyacetic acid. Two treatments were the most favorable, resulting in over two times greater efficiency of microspore embryogenesis induction in comparison to the control. The effect of breaking down the genotype recalcitrance (manifested by green plant formation) was observed under the influence of 5 ionic liquids treatments. Summing up, ionic liquids had a positive impact on microspore embryogenesis induction and green plant regeneration, increasing the efficiency of these phenomena in both embryogenic and recalcitrant genotypes. Herbicidal ionic liquids can be successfully used in in vitro cultures.


Plants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 702 ◽  
Author(s):  
Siamak Shirani Bidabadi ◽  
S. Mohan Jain

Plants generally have the highest regenerative ability because they show a high degree of developmental plasticity. Although the basic principles of plant regeneration date back many years, understanding the cellular, molecular, and physiological mechanisms based on these principles is currently in progress. In addition to the significant effects of some factors such as medium components, phytohormones, explant type, and light on the regeneration ability of an explant, recent reports evidence the involvement of molecular signals in organogenesis and embryogenesis responses to explant wounding, induced plant cell death, and phytohormones interaction. However, some cellular behaviors such as the occurrence of somaclonal variations and abnormalities during the in vitro plant regeneration process may be associated with adverse effects on the efficacy of plant regeneration. A review of past studies suggests that, in some cases, regeneration in plants involves the reprogramming of distinct somatic cells, while in others, it is induced by the activation of relatively undifferentiated cells in somatic tissues. However, this review covers the most important factors involved in the process of plant regeneration and discusses the mechanisms by which plants monitor this process.


1986 ◽  
Vol 66 (4) ◽  
pp. 953-959 ◽  
Author(s):  
W. DAVID LANE ◽  
F. COSSIO

Immature embryos of Prunus armeniaca (apricot) and Prunus persica (peach) collected 20–30 d from anthesis were cultured on Murashige and Skoog medium supplemented with benzyladenine (BA) and various auxins to study their potential for regeneration. Both species developed adventitious buds on cotyledons when cultured in vitro. Apricot frequency of regeneration was as high as 100% when BA (5.0 μM) and 2,4-D (1.0 μM) were included in the medium. Cherry response was less than apricot (up to 70%) and the maximum frequency of regeneration occurred using media with BA alone (3.0 μM). Auxin was inhibitory to sweet cherry regeneration. The physiological stage of development was very important for regeneration from both species since regeneration did not occur when very young or fully mature embryos were used as explants. Apricot plants were produced by rooting shoots which developed from the regenerated buds on the cotyledons.Key words: Apricot, sweet cherry, regeneration, immature embryo, cotyledon, tissue culture


PROTOPLASMA ◽  
2014 ◽  
Vol 251 (6) ◽  
pp. 1455-1470 ◽  
Author(s):  
Fabienne Delporte ◽  
Anna Pretova ◽  
Patrick du Jardin ◽  
Bernard Watillon

2021 ◽  
Vol 40 ◽  
pp. 01001
Author(s):  
Elen Poghosyan ◽  
Naira Sahakyan ◽  
Margarit Petrosyan ◽  
Irina Batlutskaya ◽  
Karen Trchounian

A growing demand for the ecologically pure products brings us for searching novel biotechnological approaches for plant cultivation. One of these approaches is the in vitro cultivation and further acclimatization of valuable plant species. The object of our investigation was Ajugareptance L. ornamental plant which possesses high metabolic activity. In vitro cultivation was carried out applying Murashige-Skoog nutrient medium and its modifications. Acclimatization of in vitro plants was implemented according Hazarika. In the presence of twice higher concentration of cytokinins over auxins and 0.2 mg/ml gibberellins callus culture was formed from the leaf explants. Callus tissue was formed in the presence of 0.2 mg/ml kinetin and 2 mg/ml indole-3-acetic acid which has denser structure than the first one. The shoot formation was observed on callus cultures growing on the same medium approximately after 5th passage. Callus culture growth was supported also by the adding of 2 mg/ml 2,4-dichlorophenoxyacetic acid. For the micropropagation, the already formed shoots were transferred to the nutrient medium which contains only 0.1 mg/ml 1-Naphthaleneacetic acid as a phytohormone. A. reptans culture has high regenerative ability and the micro-propagation index was 104 – 105. In vitro regenerated plants were successfully acclimatized to the soil conditions during two-week period.


HortScience ◽  
2008 ◽  
Vol 43 (7) ◽  
pp. 2138-2142 ◽  
Author(s):  
Chiu-Yueh Hung ◽  
Jiahua Xie

A method of in vitro plant regeneration for both the selenium-hyperaccumulator Astragalus racemosus ‘Cream Milkvetch’ and the nonaccumulator Astragalus canadensis ‘Canadian Milkvetch’ was developed with two induction media, M1 and M2. The M1 and M2 contain Murashige and Skoog basal medium plus vitamins, 8.07 μm N-(2-chloro-4-pyridyl)-N′-phenylurea, 2.5% (w·v−1) sucrose, 0.7% (w·v−1) agar (pH 5.7), and 0.89 μm or 3.12 μm a-naphthaleneacetic acid, respectively. In vitro cultures were initiated on these two types of media with three types of explants: cotyledons, hypocotyls, and roots. More than 93% of cultured explants from both species could form calli or calli with shoots. With regard to shoot formation, A. canadensis could produce multiple shoots from all types of explants more efficiently than A. racemosus. The highest shoot induction was approximately three shoots per explant in A. racemosus, whereas A. canadensis could reach ≈10 shoots per explant. M1 could induce more shoots than M2 no matter what type of explant was used, but the overall induction rates were no significant difference. Among the three types of explants used, the cotyledons were the best explants for shoot induction in A. canadensis, whereas hypocotyls were the best in A. racemosus. In A. racemosus, shoots could also be obtained from calli on the rooting medium containing Murashige and Skoog basal plus vitamins, 2.84 μm indole-3 acetic acid, 2.5% (w·v−1) sucrose, and 0.7% (w·v−1) agar (pH 5.7). Approximately 43% of A. canadensis shoots and 19% of A. racemosus shoots could be rooted on the rooting medium.


Sign in / Sign up

Export Citation Format

Share Document