Structured Polyethylene Nanocomposites: Effects of Crystal Orientation and Nanofiller Alignment on High Field Dielectric Properties

MRS Advances ◽  
2016 ◽  
Vol 2 (6) ◽  
pp. 363-368 ◽  
Author(s):  
Bo Li ◽  
C. I. Camilli ◽  
P. I. Xidas ◽  
K. S. Triantafyllidis ◽  
E. Manias

ABSTRACTIn previous work we have shown that aligned high aspect-ratio (pseudo-2D) nanofillers can yield large dielectric breakdown strength (EBD) improvements for a nanocomposite with a low-crystallinity polyethylene matrix. Here, we report a systematic study which delineates the contributions of the aligned inorganic fillers and of the aligned polymer crystallites in the overall EBD improvement achieved in the nanocomposites. Specifically, extrusion blown-molded polyethylene/montmorillonite nanocomposite films were cold-stretched to various strains, to further align the nanoparticles parallel to the film surface; this filler alignment is accompanied by a commensurate alignment of the polymer crystallites, especially those heterogeneously nucleated by the fillers. A systematic series of films are studied, with increased extent of alignment of the fillers and of the crystalline lamellae (quantified through Hermans orientation order parameters from 2D X-ray diffraction studies) and the aligned structure is correlated to the electric field breakdown strength (quantified through Weibull failure studies). It is shown that aligned pseudo-2D inorganic nanofillers provide additional strong improvements in EBD, improvements that are beyond, and added in excess of, any EBD increases due to polymer-crystal orientation.

2011 ◽  
Vol 110-116 ◽  
pp. 3289-3292
Author(s):  
Jian Sheng Xie ◽  
Jin Hua Li ◽  
Ping Luan

Thin CuInSi nanocomposite films were prepared by magnetron co-sputtering. The structures of CuInSi nanocomposite films were detected by X-ray diffraction (XRD); XRD studies of the annealed films indicate the presence of CuInSi, a peak at about 2θ=42.400°. The morphology of the film surface was studied by SEM. The nanocrystallization with needle shape of CuInSi could be seen clearly. The grain size is a few hundred angstroms.


2011 ◽  
Vol 110-116 ◽  
pp. 3755-3761
Author(s):  
Jian Sheng Xie ◽  
Jin Hua Li ◽  
Ping Luan

Using magnetron sputtering technology, the CuInSi nanocomposite thin films were prepared by magnetron co-sputtering method and multilayer synthesized method respectively,and followed by annealing in N2 atmosphere at different temperatures. The structure of CuInSi nanocomposite films were detected by X-ray diffraction (XRD); X-ray diffraction studies of the annealed films indicate the presence of CuInSi, the peak of main crystal phase is at about 2θ=42.308°,meanwhile,there are In2O3 peak and other peaks in the XRD patterns of films. The morphology of the film surface was studied by SEM. The SEM images show that the crystalline of the film prepared by multilayer synthesized method was granulated, But the crystalline of the film prepared by magnetron co-sputtering with needle shape. The grain size is a few hundred angstroms. The band gap has been estimated from the optical absorption studies and found to be about 1.40 eV for the sample by magnetron co-sputtering, and 1.45eV for the sample by multilayer synthesized, but all changes with the purity of CuInSi.


2011 ◽  
Vol 383-390 ◽  
pp. 2770-2773
Author(s):  
Jian Sheng Xie ◽  
Ping Luan ◽  
Jin Hua Li

Using magnetron sputtering technology, the CuInSi nanocomposite thin films were prepared by multilayer synthesized method. The structure of CuInSi nanocomposite films was detected by X-ray diffraction (XRD), the peak of main crystal phase is at 2θ=42.180°; the morphology of the film surface was studied by SEM. The SEM images show that the crystalline of the film prepared by multilayer synthesized method was granulated, differed from the needle shape which was the morphology of the CuInSi film prepared by magnetron co-sputtering.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3191
Author(s):  
Arun Kumar Mukhopadhyay ◽  
Avishek Roy ◽  
Gourab Bhattacharjee ◽  
Sadhan Chandra Das ◽  
Abhijit Majumdar ◽  
...  

We report the surface stoichiometry of Tix-CuyNz thin film as a function of film depth. Films are deposited by high power impulse (HiPIMS) and DC magnetron sputtering (DCMS). The composition of Ti, Cu, and N in the deposited film is investigated by X-ray photoelectron spectroscopy (XPS). At a larger depth, the relative composition of Cu and Ti in the film is increased compared to the surface. The amount of adventitious carbon which is present on the film surface strongly decreases with film depth. Deposited films also contain a significant amount of oxygen whose origin is not fully clear. Grazing incidence X-ray diffraction (GIXD) shows a Cu3N phase on the surface, while transmission electron microscopy (TEM) indicates a polycrystalline structure and the presence of a Ti3CuN phase.


2012 ◽  
Vol 472-475 ◽  
pp. 1451-1454
Author(s):  
Xue Hui Wang ◽  
Wu Tang ◽  
Ji Jun Yang

The porous Cu film was deposited on soft PVDF substrate by magnetron sputtering at different sputtering pressure. The microstructure and electrical properties of Cu films were investigated as a function of sputtering pressure by X-ray diffraction XRD and Hall effect method. The results show that the surface morphology of Cu film is porous, and the XRD revealed that there are Cu diffraction peaks with highly textured having a Cu-(220) or a mixture of Cu-(111) and Cu-(220) at sputtering pressure 0.5 Pa. The electrical properties are also severely influenced by sputtering pressure, the resistivity of the porous Cu film is much larger than that fabricated on Si substrate. Furthermore, the resistivity increases simultaneously with the increasing of Cu film surface aperture, but the resistivity of Cu film still decreases with the increasing grain size. It can be concluded that the crystal structure is still the most important factor for the porous Cu film resistivity.


2011 ◽  
Vol 312-315 ◽  
pp. 1044-1048
Author(s):  
Salina Muhamad ◽  
Abu Bakar Suriani ◽  
Mohamad Zainizan Sahdan ◽  
Anuar Ahmad ◽  
Yosri M. Siran ◽  
...  

In this paper, the study of supergrowth VACNTs after being immersed in zinc oxide solution were presented. Vertically aligned carbon nanotubes (VACNTs) were first deposited on silicon with the orientation of [1 0 0] before being immersed in an aqueous solution of zinc nitrate hexahydrate and hexamethylenetetramine. Physical changes have been observed by scanning electron microscopy, SEM in the VACNTs, where the significant expansion of length of up to almost 0.8 mm was achieved after the immersion of 4.5 hr. The supergrowth of VACNTs was observed and analyzed by energy dispersive x-ray spectroscopy, EDX to substantiate the incorporation of CNTs and ZnO of the sample. Raman spectroscopy and x-ray diffraction, XRD were used to inspect the crystal orientation to support our findings.


2014 ◽  
Vol 996 ◽  
pp. 135-140
Author(s):  
Shigeru Suzuki ◽  
Shigeo Sato ◽  
Koji Hotta ◽  
Eui Pyo Kwon ◽  
Shun Fujieda ◽  
...  

White X-ray diffraction with micro-beam synchrotron radiation was used to analyze microscopic stress evolved in coarse grains of a twinning-induced plasticity Fe-Mn-C steel under tensile loading. In addition, electron backscatter diffraction (EBSD) was used to determine the crystal orientation of grains in the polycrystalline Fe-Mn-C steel. Based on these orientation data, the stress and strain distribution in the microstructure of the steel under tensile loading was estimated using FEM simulation where the elastic anisotropy or the crystal orientation dependence of the elasticity was taken into account. The FEM simulation showed that the strain distribution in the microstructure depends on the crystal orientation of each grain. The stress analysis by the white X-ray diffraction indicated that the direction of the maximum principal stresses at measured points in the steel under tensile loading are mostly oriented toward the tensile direction. This is qualitatively consistent with the results of by the FEM simulation, although absolute values of the principal stresses may contain the effect of heterogeneous plastic deformation on the stress distribution.


2006 ◽  
Vol 75 (2) ◽  
pp. 024710 ◽  
Author(s):  
Y. H. Matsuda ◽  
T. Inami ◽  
K. Ohwada ◽  
Y. Murata ◽  
H. Nojiri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document