Data-Enabled Discovery and Design of Energy Materials (D3EM): Structure of An Interdisciplinary Materials Design Graduate Program

MRS Advances ◽  
2017 ◽  
Vol 2 (31-32) ◽  
pp. 1693-1698 ◽  
Author(s):  
Chi-Ning Chang ◽  
Brandie Semma ◽  
Marta Lynn Pardo ◽  
Debra Fowler ◽  
Patrick Shamberger ◽  
...  

ABSTRACTThe Materials Genome Initiative (MGI) calls for the acceleration of the materials development cycle through the integration of experiments and simulations within a data-aware/enabling framework. To realize this vision, MGI recognizes the need for the creation of a new kind of workforce capable of creating and/or deploying advanced informatics tools and methods into the materials discovery/development cycle. An interdisciplinary team at Texas A&M seeks to address this challenge by creating an interdisciplinary program that goes beyond MGI in that it incorporates the discipline of engineering systems design as an essential component of the new accelerated materials development paradigm. The Data-Enabled Discovery and Development of Energy Materials (D3EM) program seeks to create an interdisciplinary graduate program at the intersection of materials science, informatics, and design. In this paper, we describe the rationale for the creation of such a program, present the pedagogical model that forms the basis of the program, and describe some of the major elements of the program.

MRS Advances ◽  
2020 ◽  
Vol 5 (7) ◽  
pp. 355-362
Author(s):  
Chi-Ning Chang ◽  
Clinton A. Patterson ◽  
Willie C. Harmon ◽  
Debra A. Fowler ◽  
Raymundo Arroyave

AbstractRecognizing materials development was advancing slower than technological needs, the 2011 the Materials Genome Initiative (MGI) advocated interdisciplinary approaches employing an informatics framework in materials discovery and development. In response, an interdisciplinary graduate program, funded by the National Science Foundation, was designed at the intersection of materials science, materials informatics, and engineering design, aiming to equip the next generation of scientists and engineers with Material Data Science. Based on the 4- year implementation experience, this report demonstrates how intellectual communities bridge students interdisciplinary learning processes and support a transition from disciplinary grounding to interdisciplinary learning and research. We hope this training model can benefit other interdisciplinary graduate programs, and produce a more productive and interdisciplinary materials workforce.


MRS Bulletin ◽  
1990 ◽  
Vol 15 (8) ◽  
pp. 49-53 ◽  
Author(s):  
Larry L. Hench

Many millions of dollars are invested annually in materials science research and development in U.S. universities. Both the universities and the sponsors, either government or private industry, have enormous incentives for the R&D efforts to become commercial. For private industry a successful development means new or improved products or processes and ultimately more profits. For the government, successful materials development can lead to improved hardware or operations efficiency and lower costs. For a university the payoff can be more than economic.Ideally, successful commercial development leads to royalties paid to the universities in the form of the most precious of assets — Unrestricted or flexible income. Students and faculty can benefit from the additional income, both privately, depending on university policy, and through their departments. However, benefits can also accrue in the form of experience and knowledge gained while participating in the technology transfer process from university to corporation. Students who take part in such efforts gain invaluable experience in preparing and defending patent applications, designing and developing prototypes, and they are exposed to economic and legal issues that are seldom taught in the classroom. They become more valuable graduates. Taking part in a technology transfer case history is a far more effective form of learning than reading about it.These benefits to a university are offset by a number of potentially negative factors. The space, time, personnel, equipment, and deadline pressures involved in commercialization are often beyond the capabilities of a university program. However, these limitations may not be realized until the effort has begun, and it is costly to stop in midstream, as is discussed below.


2020 ◽  
Vol 11 (11) ◽  
pp. 20111571-20111571
Author(s):  
Sugam Shivhare

Author(s):  
Michael E. Pregill

This chapter re-evaluates major aspects of the Golden Calf story in the Qur’an, proposing a reading of the narrative that breaks with those of both traditional Muslim and Western scholarship and seeks to restore it to its proper historical, religious, and literary context in Late Antiquity. The qur’anic references to the image worshipped by the Israelites provided Muslim exegetes with a pretext for depicting the Calf as alive or at least possessing some semblance of life. However, the qur’anic Calf is better understood not as ? lowing image of a calf but rather an image of a lowing calf, a distinction of enormous significance for the exegesis of the story. In the absence of a conception of the Golden Calf as actually or seemingly animate, the Qur’an’s allusions to the creation of this entity must be reinterpreted as well. This chapter thus proposes alternative explanations of the major elements of the traditional portrayal of the narrative, especially the depiction of the “Samaritan” as an outside interloper who created and animated the Calf through supernatural means, with Moses subsequently imposing a sentence of exile on both him and his descendants, the Samaritan community, for all time. Instead, the major elements of the key passage in the Qur’an can be interpreted as allusions to various biblical subtexts; the qur’anic story originally posited, like its Jewish and Christian precursors, that it was Aaron—called by the unique epithet al-sāmirī here—who had made the Calf and led the Israelites into sin.


2013 ◽  
Vol 772 ◽  
pp. 57-61 ◽  
Author(s):  
Norbert Schell ◽  
Andrew King ◽  
Felix Beckmann ◽  
Torben Fischer ◽  
Martin Müller ◽  
...  

The HEMS beamline at PETRA III has a main energy of 120 keV, is tunable in the range 30-200 keV, and optimized for sub-micrometer focusing with Compound Refractive Lenses. Design, construction, and main funding was the responsibility of the Helmholtz-Zentrum Geesthacht, HZG. Approximately 70 % of the beamtime is dedicated to Materials Research, the rest reserved for “general physics” experiments covered by DESY, Hamburg. The beamline P07 in sector 5 consists of an undulator source optimized for high energies, a white beam optics hutch, an in-house test facility and three independent experimental hutches, plus additional set-up and storage space for long-term experiments. HEMS has partly been operational since summer 2010. First experiments are introduced coming from (a) fundamental research for the investigation of the relation between macroscopic and micro-structural properties of polycrystalline materials, grain-grain-interactions, recrystallisation processes, and the development of new & smart materials or processes; (b) applied research for manufacturing process optimization benefitting from the high flux in combination with ultra-fast detector systems allowing complex and highly dynamic in-situ studies of microstructural transformations, e.g. in-situ friction stir welding; (c) experiments targeting the industrial user community.


Author(s):  
Daniel P. Cook ◽  
Robert Wysocki

The College of Engineering and the College of Fine Arts at UNLV are collaborating in the creation of an interdisciplinary program in Entertainment Engineering and Design. In one of the first classes that has been offered in the program, the students learn materials science fundamentals through applications in basic fabrication techniques. Combining traditional lecture sessions from engineering and studio sessions from fine arts, the students work in teams on projects derived from the entertainment industry. This paper describes the format of the course, the projects that the students are assigned and how the course will fit into the overall curriculum of the new program.


2018 ◽  
Vol 941 ◽  
pp. 943-948
Author(s):  
Katja Hauschildt ◽  
Andreas Stark ◽  
Hilmar Burmester ◽  
Ursula Tietze ◽  
Norbert Schell ◽  
...  

TiAl alloys are increasingly used as a lightweight material, for example in aero engines, which also leads to the requirement for suitable repair techniques. Transient liquid phase bonding is a promising method for the closure of cracks (in non-critical or non-highly loaded areas). The brazing solder Ti-24Ni was investigated for brazing the alloy Ti-45Al-5Nb-0.2B-0.2C (in at. %). After brazing, the joint exhibits different microstructures and phase compositions. The transient liquid phase bonding process was investigated in the middle of the joint region in situ to acquire time resolved information of the phases, their development, and thus the brazing process. These investigations were performed using high-energy X-ray diffraction at the “High-Energy Materials Science” beamline HEMS, located at the synchrotron radiation facility PETRA III at DESY in Hamburg, Germany. For this, we used an induction furnace, which is briefly described here. During the analysis of the diffraction data with Rietveld refinement, the amount of liquid was refined with Gaussian peaks and thus could be quantified. Furthermore, while brazing four different phases occurred in the middle of the joint region over time. Additionally, the degree of ordering of the βo phase was determined with two ideal stoichiometric phases (completely ordered and disordered). Altogether, the phase composition changed clearly over the first six hours of the brazing process.


2020 ◽  
Vol 50 (1) ◽  
pp. 1-25 ◽  
Author(s):  
Changwon Suh ◽  
Clyde Fare ◽  
James A. Warren ◽  
Edward O. Pyzer-Knapp

Machine learning, applied to chemical and materials data, is transforming the field of materials discovery and design, yet significant work is still required to fully take advantage of machine learning algorithms, tools, and methods. Here, we review the accomplishments to date of the community and assess the maturity of state-of-the-art, data-intensive research activities that combine perspectives from materials science and chemistry. We focus on three major themes—learning to see, learning to estimate, and learning to search materials—to show how advanced computational learning technologies are rapidly and successfully used to solve materials and chemistry problems. Additionally, we discuss a clear path toward a future where data-driven approaches to materials discovery and design are standard practice.


Sign in / Sign up

Export Citation Format

Share Document