Porous Carbon/CeO2 Nanoparticles Hybrid Material for High-Capacity Super-Capacitors

MRS Advances ◽  
2017 ◽  
Vol 2 (46) ◽  
pp. 2471-2480 ◽  
Author(s):  
Hoejin Kim ◽  
Mohammad Arif Ishtiaque Shuvo ◽  
Hasanul Karim ◽  
Manjula I Nandasiri ◽  
Ashleigh M Schwarz ◽  
...  

ABSTRACTThe increasing demand for energy storage devices has propelled research for developing efficient super-capacitors (SC) with long cycle life and ultrahigh energy density. Carbon-based materials are commonly used as electrode materials for SC. Herein, we report a new approach to improve the SC performance utilizing a Porous Carbon/Cerium Oxide nanoparticle (PC-CON) hybrid as electrode material synthesized via a low temperature hydrothermal method. Through this approach, charges can be stored not only via electrochemical double layer capacitance (EDLC) from PC but also through pseudo-capacitive effect from CeO2 nanoparticles (NPs). The electrode-electrolyte interaction due to the electrochemical properties of the electrolyte provides an enhanced voltage window for the SC. Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS), and X-Ray Diffraction (XRD) measurements were used for the characterization of this PC/CeO2 hybrid material system. The testing results have shown that a maximum of 500% higher specific capacitance could be obtained using PC/CeO2 instead of using PC only.

2008 ◽  
Vol 80 (11) ◽  
pp. 2327-2343 ◽  
Author(s):  
V. Subramanian ◽  
Hongwei Zhu ◽  
Bingqing Wei

Manganese oxides have been synthesized by a variety of techniques in different nanostructures and studied for their properties as electrode materials in two different storage applications, supercapacitors (SCs) and Li-ion batteries. The composites involving carbon nanotubes (CNTs) and manganese oxides were also prepared by a simple room-temperature method and evaluated as electrode materials in the above applications. The synthesis of nanostructured manganese oxides was carried out by simple soft chemical methods without any structure directing agents or surfactants. The prepared materials were well characterized using different analytical techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), surface area studies, etc. The electrochemical properties of the nanostructured manganese oxides and their composites were studied using cyclic voltammetry (CV), galvanostatic charge-discharge, and electrochemical impedance spectroscopic (EIS) studies. The influence of structural/surface properties on the electrochemical performance of the synthesized manganese oxides is reviewed.


NANO ◽  
2020 ◽  
Vol 15 (08) ◽  
pp. 2050099
Author(s):  
Lijun Chen ◽  
Hongfeng Yin ◽  
Yuchao Zhang ◽  
Huidong Xie

Herein, KH-550 was used as surface modifier to prepare modified MnO2/reduced graphene oxide (M-MnO2/rGO) composite electrode materials by utilizing electrostatic interaction at low temperature and normal pressure. X-ray diffraction, scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy were adopted to characterize the material’s phase, morphology, and valence state of elements. The electrochemical properties of the material were measured using a three-electrode system. The results indicate a decrease in the size of the modified MnO2 particles, and that they were uniformly distributed on the rGO sheets. The M-MnO2/rGO composite attained a specific capacitance of 326[Formula: see text]F[Formula: see text]g[Formula: see text] in a solution of 1[Formula: see text]mol[Formula: see text]L[Formula: see text] Na2SO4 at a current density of 0.5[Formula: see text]A[Formula: see text]g[Formula: see text]. The specific capacitance of the material was 92.4% after 1000 cycles. The electrostatic self-assembly method effectively solved the problem of reducing the cycling stability while improving the specific capacitance of the composite materials, and further improved the possibility of applying MnO2/rGO in the field of supercapacitors.


Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 655 ◽  
Author(s):  
Francesco Veltri ◽  
Francesca Alessandro ◽  
Andrea Scarcello ◽  
Amerigo Beneduci ◽  
Melvin Arias Polanco ◽  
...  

Porous carbon materials are currently subjected to strong research efforts mainly due to their excellent performances in energy storage devices. A sustainable process to obtain them is hydrothermal carbonization (HTC), in which the decomposition of biomass precursors generates solid products called hydrochars, together with liquid and gaseous products. Hydrochars have a high C content and are rich with oxygen-containing functional groups, which is important for subsequent activation. Orange pomace and orange peels are considered wastes and then have been investigated as possible feedstocks for hydrochars production. On the contrary, orange juice was treated by HTC only to obtain carbon quantum dots. In the present study, pure orange juice was hydrothermally carbonized and the resulting hydrochar was filtered and washed, and graphitized/activated by KOH in nitrogen atmosphere at 800 °C. The resulting material was studied by transmission and scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and nitrogen sorption isotherms. We found porous microspheres with some degree of graphitization and high nitrogen content, a specific surface of 1725 m2/g, and a pore size distribution that make them good candidates for supercapacitor electrodes.


Nanomaterials ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 76 ◽  
Author(s):  
Chinnusamy Sathiskumar ◽  
Shanmugam Ramakrishnan ◽  
Mohanraj Vinothkannan ◽  
Ae Rhan Kim ◽  
Srinivasan Karthikeyan ◽  
...  

Tremendous developments in energy storage and conversion technologies urges researchers to develop inexpensive, greatly efficient, durable and metal-free electrocatalysts for tri-functional electrochemical reactions, namely oxygen reduction reactions (ORRs), oxygen evolution reactions (OERs) and hydrogen evolution reactions (HERs). In these regards, this present study focuses upon the synthesis of porous carbon (PC) or N-doped porous carbon (N-PC) acquired from golden shower pods biomass (GSB) via solvent-free synthesis. Raman spectroscopy, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) studies confirmed the doping of nitrogen in N-PC. In addition, morphological analysis via field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) provide evidence of the sheet-like porous structure of N-PC. ORR results from N-PC show the four-electron pathway (average n = 3.6) for ORRs with a Tafel slope of 86 mV dec−1 and a half-wave potential of 0.76 V. For OERs and HERs, N-PC@Ni shows better overpotential values of 314 and 179 mV at 10 mA cm−2, and its corresponding Tafel slopes are 132 and 98 mV dec−1, respectively. The chronopotentiometry curve of N-PC@Ni reveals better stability toward OER and HER at 50 mA cm−2 for 8 h. These consequences provide new pathways to fabricate efficient electrocatalysts of metal-free heteroatom-doped porous carbon from bio-waste/biomass for energy application in water splitting and metal air batteries.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3285 ◽  
Author(s):  
Yedluri Kumar ◽  
Hee-Je Kim

CoO–ZnO-based composites have attracted considerable attention for the development of energy storage devices because of their multifunctional characterization and ease of integration with existing components. This paper reports the synthesis of CoO@ZnO (CZ) nanostructures on Ni foam by the chemical bath deposition (CBD) method for facile and eco-friendly supercapacitor applications. The formation of a CoO@ZnO electrode functioned with cobalt, zinc, nickel and oxygen groups was confirmed by X-ray diffraction (XRD) analysis, X-ray photoelectron spectroscopy (XPS), low and high-resolution scanning electron microscopy (SEM), and transmission electron microscopy (TEM) analysis. The as-synthesized hierarchical nanocorn skeleton-like structure of a CoO@ZnO-3h (CZ3h) electrode delivered a higher specific capacitance (Cs) of 1136 F/g at 3 A/g with outstanding cycling performance, showing 98.3% capacitance retention over 3000 cycles in an aqueous 2 M KOH electrolyte solution. This retention was significantly better than that of other prepared electrodes, such as CoO, ZnO, CoO@ZnO-1h (CZ1h), and CoO@ZnO-7h (CZ7h) (274 F/g, 383 F/g, 240 F/g and 537 F/g). This outstanding performance was attributed to the excellent surface morphology of CZ3h, which is responsible for the rapid electron/ion transfer between the electrolyte and the electrode surface area. The enhanced features of the CZ3h electrode highlight potential applications in high performance supercapacitors, solar cells, photocatalysis, and electrocatalysis.


Author(s):  
Anil Kumar Yedluri ◽  
Hee-Je Kim

CoO-ZnO-based composites have attracted considerable attention for the development of energy storage devices because of their multifunctional characterization and ease of integration with existing components. This paper reports the synthesis of CoO@ZnO (CZ) nanostructures on Ni foam by the CBD method for facile and eco-friendly supercapacitor applications. The formation of a CoO@ZnO electrode functioned with cobalt, zinc, nickel and oxygen groups was confirmed by X-ray diffraction, X-ray photoelectron spectroscopy, low and high-resolution of scanning electron microscopy, and transmission electron microscopy. The as-synthesized hierarchical nanocorn skeleton-like structure of CoO@ZnO-3h (CZ3h) electrode delivered a higher specific capacitance of 1136 F/g at a current density of 3 A/g with outstanding cycling stability, showing 98.3% capacitance retention over 3000 cycles in an aqueous 2 M KOH electrolyte solution. This retention was significantly better than that of other prepared electrodes, such as CoO (CO), ZnO (ZO), CoO@ZnO-1h (CZ1h), and CoO@ZnO-7h (CZ7h) (274, 383, 240 and 537 F/g, respectively). This superior capacitance was attributed to the ideal surface morphology of CZ3h, which is responsible for the rapid electron/ion transfer between the electrolyte and electrode surface area. The enhanced features of the CZ3h electrode highlight potential applications in high performance supercapacitors, solar cells, photocatalysis, and electrocatalysis.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1662
Author(s):  
Junming Xu ◽  
Mengxia Tang ◽  
Zhengming Hu ◽  
Xiaoping Hu ◽  
Tao Zhou ◽  
...  

For conventional synthesis of Ni(OH)2/graphene hybrids, oxygen-containing functional groups should be firstly introduced on graphene to serve as active sites for the anchoring of Ni(OH)2. In this work, a method for growing Ni(OH)2 nanosheets on multilayer graphene (MLG) with molecular connection is developed which does not need any pre-activation treatments. Moreover, Ni(OH)2 nanosheets can be controlled to stand or lie on the surface of MLG. The prepared hybrids were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The growth processes are suggested according to their morphologies at different growth stages. The enhanced electrochemical performances as supercapacitor electrode materials were confirmed by cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) techniques. Ni(OH)2 nanosheets standing and lying on MLG show specific capacities of 204.4 mAh g−1 and 131.7 mAh g−1, respectively, at 1 A g−1 based on the total mass of the hybrids and 81.5% and 92.8% capacity retention at a high current density of 10 A g−1, respectively. Hybrid supercapacitors with as-prepared hybrids as cathodes and activated carbon as anode were fabricated and tested.


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1730 ◽  
Author(s):  
Ha Tran Huu ◽  
Xuan Dieu Nguyen Thi ◽  
Kim Nguyen Van ◽  
Sung Jin Kim ◽  
Vien Vo

The demand for well-designed nanostructured composites with enhanced electrochemical performance for lithium-ion batteries electrode materials has been emerging. In order to improve the electrochemical performance of MoS2-based anode materials, MoS2 nanosheets integrated with g-C3N4 (MoS2/g-C3N4 composite) was synthesized by a facile heating treatment from the precursors of thiourea and sodium molybdate at 550 °C under N2 gas flow. The structure and composition of MoS2/g-C3N4 were confirmed by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, infrared spectroscopy, X-ray photoelectron spectroscopy, thermogravimetric analysis and elemental analysis. The lithium storage capability of the MoS2/g-C3N4 composite was evaluated, indicating high capacity and stable cycling performance at 1 C (A·g−1) with a reversible capacity of 1204 mA·h·g−1 for 200 cycles. This result is believed the role of g-C3N4 as a supporting material to accommodate the volume change and improve charge transport for nanostructured MoS2. Additionally, the contribution of the pseudocapacitive effect was also calculated to further clarify the enhancement in Li-ion storage performance of the composite.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hongfang Ma ◽  
Zhanghao Chen ◽  
Xiang Gao ◽  
Wenfei Liu ◽  
Hanfei Zhu

AbstractPorous carbon are excellent electrode materials for energy-storage devices. Here, we present a facile in-situ reduction method to improve the electrochemical performance of carbon materials by gold nanoparticles. The prepared porous carbon microspheres decorated with gold-nanoparticle had a 3D honeycomb-like structure with a high specific surface area of about 1635 m2 g−1, confirmed by scanning electron microscopy, transmission electron microscopy, and the Brunauer-Emmett-Teller method. The electrochemical performance of as-synthesized porous carbon microspheres was exemplified as electrode materials for supercapacitor with a high specific capacitance of 440 F g−1 at a current density of 0.5 A g−1, and excellent cycling stability with a capacitance retention of 100% after 2000 cycles at 10 A g−1 in 6 M KOH electrolyte. Our method opened a new direction for the gold-nanoparticle-decorated synthesis of porous carbon microspheres and could be further applied to synthesize porous carbon microspheres with various nanoparticle decorations for numerous applications as energy storage devices, enhanced absorption materials, and catalytical sites.


Coatings ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 200 ◽  
Author(s):  
Ravi Bolagam ◽  
Sukkee Um

In this paper, we report the successful synthesis of cobalt ruthenium sulfides by a facile hydrothermal method. The structural aspects of the as-prepared cobalt ruthenium sulfides were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy. All the prepared materials exhibited nanocrystal morphology. The electrochemical performance of the ternary metal sulfides was investigated by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy techniques. Noticeably, the optimized ternary metal sulfide electrode exhibited good specific capacitances of 95 F g−1 at 5 mV s−1 and 75 F g−1 at 1 A g−1, excellent rate capability (48 F g−1 at 5 A g−1), and superior cycling stability (81% capacitance retention after 1000 cycles). Moreover, this electrode demonstrated energy densities of 10.5 and 6.7 Wh kg−1 at power densities of 600 and 3001.5 W kg−1, respectively. These attractive properties endow proposed electrodes with significant potential for high-performance energy storage devices.


Sign in / Sign up

Export Citation Format

Share Document