Formulation and characterization of a paediatric nanoemulsion dosage form with modified oral drug delivery system for improved dissolution rate of nevirapine

MRS Advances ◽  
2018 ◽  
Vol 3 (37) ◽  
pp. 2203-2219 ◽  
Author(s):  
Tapiwa E. Manyarara ◽  
Star Khoza ◽  
Admire Dube ◽  
Chiedza C. Maponga

ABSTRACTBackground: The development of appropriate dosage forms for paediatric antiretroviral therapy is key for improved therapeutic outcomes in children. The focus of this study was to improve solubility, dissolution rate, drug release and maintain high drug permeability.Methodology: A nanoemulsion was prepared using emulsion inversion point and evaluated. The nanoemulsion had nevirapine (3% w/w). In vitro drug release studies were performed using dialysis membrane. Permeability studies using the Caco-2 cell model were performed for the formulation.Results: The optimized nevirapine nanoemulsion had a mean droplet size of 36.09±12.27nm, low pdI of 0.598 and zeta potential of -7.87±4.35mV. At pH 2, the nanoemulsion released 76 ± 2 % of nevirapine within 2 h, while at pH 6.4 value representing the small intestine, amount of nevirapine released was 41.6± 4 %. The permeability rate of the nevirapine nanoemulsion was 30.02 x 10-6cm/s and higher than that of propranolol. Efflux ratio was 0.02 indicating low chance of drug efflux occurring.Conclusion: The results showed that a modified liquid drug release formulations of nevirapine could improve rate of dissolution and maintain high permeability and low drug efflux improving bioavailability of nevirapine in vivo.

INDIAN DRUGS ◽  
2013 ◽  
Vol 50 (06) ◽  
pp. 36-39
Author(s):  
S Deshmane ◽  
◽  
K Gandhi ◽  
S. Nagpure ◽  
A. Sawant ◽  
...  

The new mathematical model was developed by studying angle of slide using N, N-dimethyl acetamide, non-volatile liquid vehicle and prepared liquisolid tablets, in which the different concentrations of non-volatile liquid adsorbed over carrier and coating material separately. Both DSC and FT-IR study showed better compatibility and stability. The optimized formulation showed higher drug release during in-vitro and in-vivo study against conventional and marketed preparation. The present work concludes that N, N-dimethyl acetamide enhanced the solubility of pioglitazone HCl with higher dissolution rate through liquisolid technique.


Author(s):  
Pravin S Patil ◽  
Shashikant C Dhawale

 Objective: The purpose of the present investigation was to develop a nanosuspension to improve dissolution rate and oral bioavailability of ritonavir.Methods: Extended-release ritonavir loaded nanoparticles were prepared using the polymeric system by nanoprecipitation technique. Further, the effect of Eudragit RL100 (polymeric matrix) and polyvinyl alcohol (surfactant) was investigated on particle size and distribution, drug content, entrapment efficiency, and in vitro drug release from nanosuspension where a strong influence of polymeric contents was observed. Drug-excipient compatibility and amorphous nature of drug in prepared nanoparticles were confirmed by Fourier transform infrared spectroscopy, differential scanning calorimetry, and powder X-ray diffraction studies, respectively.Results: Hydrophobic portions of Eudragit RL100 could result in enhanced encapsulation efficiency. However, increase in polymer and surfactant contents lead to enlarged particle size proportionately as confirmed by transmission electron microscopy. Nanosuspension showed a significant rise in dissolution rate with complete in vitro drug release as well as higher bioavailability in rats compared to the pure drug.Conclusion: The nanoprecipitation technique used in present research could be further explored for the development of different antiretroviral drug carrier therapeutics.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 416 ◽  
Author(s):  
Schneider ◽  
Koziolek ◽  
Weitschies

More than 50 years ago, the first concepts for gastroretentive drug delivery systems were developed. Despite extensive research in this field, there is no single formulation concept for which reliable gastroretention has been demonstrated under different prandial conditions. Thus, gastroretention remains the holy grail of oral drug delivery. One of the major reasons for the various setbacks in this field is the lack of predictive in vitro and in vivo test methods used during preclinical development. In most cases, human gastrointestinal physiology is not properly considered, which leads to the application of inappropriate in vitro and animal models. Moreover, conditions in the stomach are often not fully understood. Important aspects such as the kinetics of fluid volumes, gastric pH or mechanical stresses have to be considered in a realistic manner, otherwise, the gastroretentive potential as well as drug release of novel formulations cannot be assessed correctly in preclinical studies. This review, therefore, highlights the most important aspects of human gastrointestinal physiology and discusses their potential implications for the evaluation of gastroretentive drug delivery systems.


2010 ◽  
Vol 8 (1) ◽  
pp. 225-238 ◽  
Author(s):  
Hong Yuan ◽  
Lin-Juan Lu ◽  
Yong-Zhong Du ◽  
Fu-Qiang Hu

1992 ◽  
Vol 19 (1-3) ◽  
pp. 131-144 ◽  
Author(s):  
Waleed S.W. Shalaby ◽  
William E. Blevins ◽  
Kinam Park

2019 ◽  
Vol 16 (3) ◽  
pp. 242-253 ◽  
Author(s):  
Kaleem Ullah ◽  
Muhammad Sohail ◽  
Abdul Mannan ◽  
Haroon Rashid ◽  
Aamna Shah ◽  
...  

Objective: The study describes the development of chitosan-based (AMPS-co-AA) semi-IPN hydrogels using free radical polymerization technique. Methods: The resulting hydrogels were characterized using Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), X-Ray diffraction (XRD), and Scanning Electron Microscopy (SEM). The successful crosslinking of chitosan, 2- Acrylamido-2-Methylpropane Sulfonic Acid (AMPS), and Acrylic Acid (AA) was confirmed by FT IR. Unloaded and drug-loaded hydrogels exhibited higher thermal stability after crosslinking compared to the individual components. XRD confirmed the decrease in crystallinity after hydrogel formation and molecular dispersion of Oxaliplatin (OXP) in the polymeric network. SEM showed rough, vague and nebulous surface resulting from crosslinking and loading of OXP. Results: The experimental results revealed that swelling and drug release were influenced by the pH of the medium being low at acidic pH and higher at basic pH. Increasing the concentration of chitosan and AA enhanced the swelling, drug loading and drug release while AMPS was found to act inversely. Conclusion: It was confirmed that the hydrogels were degraded more by specific enzyme lysozyme as compared to the non-specific enzyme collagenase. In-vitro cytotoxicity suggested that the unloaded hydrogels were non-cytotoxic while crude drug and drug-loaded hydrogel exhibited dose-dependent cytotoxicity against HCT-116 and MCF-7. Results of acute oral toxicity on rabbits demonstrated that the hydrogels are non-toxic up to 3900 mg/kg after oral administration, as no toxicity or histopathological changes were observed in comparison to control rabbits. These pH-sensitive hydrogels appear to provide an ideal basis as a safe carrier for oral drug delivery.


2017 ◽  
Vol 14 (3) ◽  
pp. 757-769 ◽  
Author(s):  
Mohammed S. Alqahtani ◽  
M. Saiful Islam ◽  
Satheesh Podaralla ◽  
Radhey S. Kaushik ◽  
Joshua Reineke ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document