Computer simulation of target link explosion in laser programmable redundancy for silicon memory

1986 ◽  
Vol 1 (2) ◽  
pp. 368-381 ◽  
Author(s):  
L.M. Scarfone ◽  
J.D. Chlipala

Pulses of Q-switched Nd-YAG radiation have been used to remove polysilicon target links during the implementation of laser programmable redundancy in the fabrication of silicon memory. The link is encapsulated by transparent dielectric films that give rise to important optical interference effects modifying the laser flux absorbed by the link and the silicon substrate. Estimates of these effects are made on the basis of classical plane-wave procedures. Thermal evolution of the composite structure is described in terms of a finite-difference form of the three-dimensional heat diffusion equation with a heat generation rate having a Gaussian spatial distribution of intensity and temporal shapes characteristic of commercial lasers. Temperature-dependent thermal diffusivity and melting of the polysilicon link are included in the computer modeling. The calculations account for the discontinuous change in the link absorption coefficient at the transition temperature. A threshold temperature and corresponding pressure, sufficiently high to rupture the dielectric above the link and initiate the removal process, are estimated by treating the molten link as a hard-sphere fluid. Numerical results are presented in the form of three-dimensional temperature distributions for 1.06 and 0.53 μm radiation with pulse energies 3.5 and 0.15μJ, respectively. Similarities and differences between heating effects produced by long (190 ns FWHM/740 ns duration) and short (35 ns FWHM/220 ns duration) pulses are pointed out.

2013 ◽  
Vol 336 ◽  
pp. 11-18 ◽  
Author(s):  
Farida Hamadi ◽  
El Hachemi Amara ◽  
Djamila Bennaceur-Doumaz ◽  
R. Boutaka ◽  
H. Kellou ◽  
...  

In this paper, we study the oxidation process during the heating of a titanium metallic surface by a Nd-YAG fiber pulsed laser beam under air environment. For this, we adopted an approach that considers a three-dimensional heat diffusion model coupled with an oxidation parabolic law (oxidation kinetics). The heat diffusion equation solved numerically, gives the temperature field. The oxide film growth is simulated by implementing a dynamic mesh technique. We developed computational procedures UDFs (User Defined Function) running interactively with the Fluent fluid dynamics software [ that implements the finite volume method. These UDFs are developed to insert the oxidation law, the temperature field, the specific boundary conditions and the mesh deformation into the calculation.


1999 ◽  
Vol 5 (2) ◽  
pp. 97-119 ◽  
Author(s):  
Shashishekara S. Talya ◽  
J. N. Rajadas ◽  
A. Chattopadhyay

Design optimization of a gas turbine blade geometry for effective film cooling toreduce the blade temperature has been done using a multiobjective optimization formulation. Three optimization formulations have been used. In the first, the average blade temperature is chosen as the objective function to be minimized. An upper bound constraint has been imposed on the maximum blade temperature. In the second, the maximum blade temperature is chosen as the objective function to be minimized with an upper bound constraint on the average blade temperature. In the third formulation, the blade average and maximum temperatures are chosen as objective functions. Shape optimization is performed using geometric parameters associated with film cooling and blade external shape. A quasi-three-dimensional Navier–Stokes solver for turbomachinery flows is used to solve for the flow field external to the blade with appropriate modifications to incorporate the effect of film cooling. The heat transfer analysis for temperature distribution within the blade is performed by solving the heat diffusion equation using the finite element method. The multiobjective Kreisselmeier–Steinhauser function approach has been used in conjunction with an approximate analysis technique for optimization. The results obtained using both formulations are compared with reference geometry. All three formulations yield significant reductions in blade temperature with the multiobjective formulation yielding largest reduction in blade temperature.


1990 ◽  
Vol 180 ◽  
Author(s):  
Taipau Chia ◽  
L. L. Hench ◽  
Chaobin Qin ◽  
C. K. Hsieh

ABSTRACTA three-dimensional transient model for heat conduction in silica glass is developed. The model simulates a three-dimensional temperature distribution in a silica glass irradiated by a moving CO2 laser. Both the reflectivity of the glass surface and the strong attenuation of the laser energy in the glass medium are accounted for by a detailed radiation analysis. The energy absorbed by the glass is determined to be confined in a 10 μm thickness; the laser irradiation is thus treated as a boundary condition. The heat diffusion equation is solved by an alternating direction-implicit method.


2018 ◽  
Vol 23 (1) ◽  
pp. 213-221 ◽  
Author(s):  
F. De Oliveira ◽  
S.R. Franco ◽  
M.A. Villela Pinto

AbstractThe aim of this paper is to reduce the necessary CPU time to solve the three-dimensional heat diffusion equation using Dirichlet boundary conditions. The finite difference method (FDM) is used to discretize the differential equations with a second-order accuracy central difference scheme (CDS). The algebraic equations systems are solved using the lexicographical and red-black Gauss-Seidel methods, associated with the geometric multigrid method with a correction scheme (CS) and V-cycle. Comparisons are made between two types of restriction: injection and full weighting. The used prolongation process is the trilinear interpolation. This work is concerned with the study of the influence of the smoothing value (v), number of mesh levels (L) and number of unknowns (N) on the CPU time, as well as the analysis of algorithm complexity.


2016 ◽  
Vol 138 (2) ◽  
Author(s):  
Elbara Ziade ◽  
Jia Yang ◽  
Gordie Brummer ◽  
Denis Nothern ◽  
Theodore Moustaks ◽  
...  

Frequency domain thermoreflectance (FDTR) is used to create quantitative maps of thermal conductivity and thickness for a thinning gallium nitride (GaN) film on silicon carbide (SiC). GaN was grown by molecular beam epitaxy on a 4H-SiC substrate with a gradient in the film thickness found near the edge of the chip. The sample was then coated with a 5 nm nickel adhesion layer and a 85 nm gold transducer layer for the FDTR measurement. A piezo stage raster scans the sample to create phase images at different frequencies. For each pixel, a periodically modulated continuous-wave laser (the red pump beam) is focused to a Gaussian spot, less than 2 um in diameter, to locally heat the sample, while a second beam (the green probe beam) monitors the surface temperature through a proportional change in the reflectivity of gold. The pump beam is modulated simultaneously at six frequencies and the thermal conductivity and thickness of the GaN film are extracted by minimizing the error between the measured probe phase lag at each frequency and an analytical solution to the heat diffusion equation in a multilayer stack of materials. A scanning electron microscope image verifies the thinning GaN. We mark the imaged area with a red box. A schematic of the GaN sample in our measurement system is shown in the top right corner, along with the two fitting properties highlighted with a red box. We show the six phase images and the two obtained property maps: thickness and thermal conductivity of the GaN. Our results indicate a thickness dependent thermal conductivity of GaN, which has implications of thermal management in GaN-based high electron mobility transistors.


2021 ◽  
Vol 11 (04) ◽  
pp. 1-11
Author(s):  
Wanwan Li

In mechanical engineering educations, simulating fluid thermodynamics is rather helpful for students to understand the fluid’s natural behaviors. However, rendering both high-quality and realtime simulations for fluid dynamics are rather challenging tasks due to their intensive computations. So, in order to speed up the simulations, we have taken advantage of GPU acceleration techniques to simulate interactive fluid thermodynamics in real-time. In this paper, we present an elegant, basic, but practical OpenGL/SL framework for fluid simulation with a heat map rendering. By solving Navier-Stokes equations coupled with the heat diffusion equation, we validate our framework through some real-case studies of the smoke-like fluid rendering such as their interactions with moving obstacles and their heat diffusion effects. As shown in Fig. 1, a group of experimental results demonstrates that our GPU-accelerated solver of Navier-Stokes equations with heat transfer could give the observers impressive real-time and realistic rendering results.


1999 ◽  
Vol 121 (1) ◽  
pp. 220-225 ◽  
Author(s):  
S.-D. Oh ◽  
S. S. Seung ◽  
H. Y. Kwak

The bubble nucleation mechanism on a cavity-free micro line heater surface was studied by using the molecular cluster model. A finite difference numerical scheme for the three-dimensional transient conduction equation for the liquid was employed to estimate the superheated volume where homogeneous bubble nucleation could occur due to heat diffusion from the heater to the liquid. Calculation results revealed that bubble formation on the heater is possible when the temperature at the hottest point in the heater is greater than the superheat limit of the liquid by 6°C–12°C, which is in agreement with the experimental results. Also it was found that the classical bubble nucleation theory breaks down near the critical point where the radius of the critical bubble is below 100 nm.


Sign in / Sign up

Export Citation Format

Share Document