Brittle fracture and grain boundary chemistry of microalloyed NiAl

1990 ◽  
Vol 5 (4) ◽  
pp. 754-762 ◽  
Author(s):  
E. P. George ◽  
C. T. Liu

The room-temperature tensile properties, fracture mode, and grain boundary chemistry of undoped stoichiometric NiAl, as well as NiAl doped with boron, carbon, and beryllium, have been investigated, Pure, stoichiometric NiAl fractures with limited tensile ductility in a predominantly intergranular manner. Auger analyses revealed that the grain boundaries in NiAl are extremely clean and free of any segregated impurities, indicating that they are intrinsically brittle. Boron, when added to stoichiometric NiAl at a bulk level of 300 wt. ppm, segregates to the grain boundaries and suppresses intergranular fracture. However, there is no attendant improvement in tensile ductility because boron is an extremely potent solid solution strengthener in NiAl, more than doubling its yield strength. As a result, any potential benefit of improving grain boundary strength is more than offset by the increase in yield strength. Unlike boron, both carbon (300 ppm) and beryllium (500 ppm) are ineffective in suppressing intergranular fracture in NiAl, and Auger analyses of the C-doped alloy revealed that carbon did not affect the fracture mode because it did not segregate to the grain boundaries. Although neither beryllium nor carbon suppressed grain boundary fracture, their effects on the tensile ductility of NiAl were quite different: the ductility of the Be-doped alloy was higher than that of the B-doped alloy because beryllium, unlike boron, has a rather modest strengthening effect in NiAl, whereas the C-doped alloy was brittle like the B-doped alloy, because carbon is a potent solid solution strengthener, just like boron. These observations were rationalized by considering a hard-sphere model for interstitial and substitutional sites in NiAl. It was concluded that boron and carbon occupy interstitial sites, whereas beryllium dissolves substitutionally. In all the alloys that were investigated, the Ni and Al contents of the grain boundaries were not significantly different from the bulk levels, and no evidence was found for B–Ni cosegregation.

1990 ◽  
Vol 186 ◽  
Author(s):  
E. P. George ◽  
C. T. Liu ◽  
J. J. Liao

AbstractThis paper summarizes the results of our work aimed at overcoming the intrinsic grainboundary weakness of NiAI by microalloying with boron. In previous work we have shown that 300 wppm boron is very effective in suppressing intergranular fracture in NiAI [1]. It does this by segregating strongly to the grain boundaries and strengthening them. Despite this dramatic effect on the fracture mode, however, boron is unable to improve ductility because it is a potent solid solution strengthener, more than doubling the yield strength relative to that of undoped NiA1. The present work attempts to decrease this deleterious hardening effect by lowering the bulk concentration of boron in NiA1. Our results show that if the boron concentration in the bulk is lowered to 30 wppm, the yield strength of boron-doped NiA1 is only about 30% higher than that of undoped NiAI. In addition, there is enough boron at the grain boundaries of this alloy to suppress intergranular fracture. Under these conditions, boron-doped NiAI has a tensile ductility of 2%, which is essentially identical to that of undoped NiA1. This result, namely that the strengthening of grain boundaries by boron does not by itself improve ductility, indicates that although grain boundaries might well be the weakest links in NiAI, cleavage planes are not much stronger. In other words, even though boron additions serve to strengthen the grain boundaries and suppress intergranular fracture, ductility is not improved, because the next brittle fracture mode, namely transgranular cleavage, takes over before significant plastic deformation can occur.


2005 ◽  
Vol 475-479 ◽  
pp. 4063-4066
Author(s):  
X. Zhang ◽  
Lina Zhang ◽  
Jun Jie Qi ◽  
Yue Ma

A novel EELS technique was developed to study bonding of grain boundary in many kinds of steels. We measured the normalized intensities of Fe white lines and calculated the occupancies of 3d states of iron, and then analyzed the relationship of the occupancies of 3d states of iron and the fracture property of the steels. We found that if the grain boundary has a different occupancy of 3d state of iron from that of the bulk, the steel tends to have an intergranular fracture, whereas if the grain boundary has almost the same occupancy of 3d state as the bulk, the steel tends to have a transgranular fracture. Our result shows that the difference in the occupancy of 3d state between bulk and grain boundary can be used to study the fracture mode at grain boundary in steel.


1986 ◽  
Vol 81 ◽  
Author(s):  
M. A. Crimp ◽  
K. M. Vedula ◽  
D. J. Gaydosh

AbstractIt has been shown that it is possible to obtain significant room temperature tensile ductility in FeAl alloys using iron-rich deviations from stoichiometry. A comparison of the room temperature tensile and compressive behaviors of Fe−50at% Al and Fe−40at% Al shows that FeAl is brittle at higher Al contents because it fractures along grain boundaries before general yielding. Lower aluminium contents reduce the yield stress substantially and hence some ductility is observed before fracture.Addition of boron results in measurable improvements in ductility of Fe−40at% Al and is accompanied by an increase in transgranular tearing on the fracture surface, suggesting a grain boundary strengthening mechanism.Increasing the cooling rate following annealing at 1273 K results in a large increase in the yield strength and a corresponding decrease in ductility.


Author(s):  
R. W. Fonda ◽  
D. E. Luzzi

The properties of polycrystalline materials are strongly dependant upon the strength of internal boundaries. Segregation of solute to the grain boundaries can adversely affect this strength. In copper alloys, segregation of either bismuth or antimony to the grain boundary will embrittle the alloy by facilitating intergranular fracture. Very small quantities of bismuth in copper have long been known to cause severe grain boundary embrittlement of the alloy. The effect of antimony is much less pronounced and is observed primarily at lower temperatures. Even though moderate amounts of antimony are fully soluble in copper, concentrations down to 0.14% can cause grain boundary embrittlement.


Author(s):  
Guoxiong Zheng ◽  
Yifan Luo ◽  
Hideo Miura

Various brittle fractures have been found to occur at grain boundaries in polycrystalline materials. In thin film interconnections used for semiconductor devices, open failures caused by electro- and strain-induced migrations have been found to be dominated by porous random grain boundaries that consist of a lot of defects. Therefore, it is very important to explicate the dominant factors of the strength of a grain boundary in polycrystalline materials for assuring the safe and reliable operation of various products. In this study, both electron back-scatter diffraction (EBSD) analysis and a micro tensile test in a scanning electron microscope was applied to copper thin film which is used for interconnection of semiconductor devices in order to clarify the relationship between the strength and the crystallinity of a grain and a grain boundary quantitatively. Image quality (IQ) value obtained from the EBSD analysis, which indicates the average sharpness of the diffraction pattern (Kikuchi pattern) was applied to the crystallinity analysis. This IQ value indicates the total density of defects such as vacancies, dislocations, impurities, and local strain, in other words, the order of atom arrangement in the observed area in nano-scale. In the micro tensile test system, stress-strain curves of a single crystal specimen and a bicrystal specimen was measured quantitatively. Both transgranular and intergranular fracture modes were observed in the tested specimens with different IQ values. Based to the results of these experiments, it was found that there is the critical IQ value at which the fracture mode of the bicrystal specimen changes from brittle intergranular fracture at a grain boundary to ductile transgranular fracture in a grain. The strength of a grain boundary increases monotonically with IQ value because of the increase in the total number of rigid atomic bonding. On the other hand, the strength of a grain decreases monotonically with the increase of IQ value because the increase in the order of atom arrangement accelerates the movement of dislocations. Finally, it was clarified that the strength of a grain boundary and a grain changes drastically as a strong function of their crystallinity.


2011 ◽  
Vol 335-336 ◽  
pp. 615-618
Author(s):  
Hong Mei Zhang ◽  
Li Feng Qiao

The cold rolling and simulative continuous annealing experiments after rolling were carried out in the laboratory on the base of super fine grain (SFG) steel sheet. The microstructure and the second-phase particles precipitated behavior were analyzed by the technology of OM, TEM and EDX. It is found that the fined Nb(C, N) can be formed by adding micro-alloy element Nb. It is noted that the yield strength is low as well as the tensile strength is high by the PFZ which is free of precipitate called precipitated free zone on the one side of the grain boundary. Contrast to the conventional IF steel, the super fine grain steel has super fine grains and gives excellent press-formability such as low yield strength, high r-value(the plastic strain ratio). High strength cold-rolled steel sheets (HSS) with high formability have been developed in the last decade, in which the major strengthening method was solid-solution hardening with silicon, manganese and phosphorous [1-3]. When the IF steel is strengthened with the high amount of solid-solution elements, it becomes susceptible to the secondary work embrittlement because of the lack of grain boundary strength [4-6]. In this paper, High strength cold-rolled steel sheets (HSS) with high formability have been developed for the IF steel-bases. The grain refinement and precipitation hardening are achieved by means of the fine distribution of carbide under the appropriate combination of the relatively higher carbon content near 0.0070 mass% with niobium. As the result, this type of IF-HSS has been successfully developed to reach a higher r-value as compared with the conventional IF-HSS.


2005 ◽  
Vol 482 ◽  
pp. 63-70 ◽  
Author(s):  
Václav Paidar ◽  
Pavel Lejček

Grain boundaries are decisive for many properties of materials. Due to short-range stress field their influence is primarily based on their atomic structure. Special character of grain boundary properties related to their structure, follows from the nature of atomic arrangements in the boundary cores, from the interfacial dislocation content and from the boundary mobility. All those aspects of boundary behaviour are strongly influenced by the boundary chemistry including various segregation phenomena. Approaches to the boundary classification and the interpretation of recent experimental results are discussed in the context of the complex relationship between microstructure and material properties. Such findings are essential for Grain Boundary Engineering proposed to improve the performance of polycrystalline materials.


1999 ◽  
Vol 589 ◽  
Author(s):  
N. D. Evans ◽  
P. H. Imamura ◽  
J. Bentley ◽  
M. L. Mecartney

AbstractAnalytical electron microscopy at high spatial resolution in a scanning-transmission mode has been used to investigate the effects of glassy or crystalline material additions on grain boundary chemistry in yttria-stabilized zirconia polycrystals. Powders of additive phase were mixed into 3-mol% yttria-stabilized tetragonal zirconia polycrystals (‘3Y-TZP’) or 8-mol% yttria-stabilized cubic zirconia polycrystals (‘8Y-CSZ’). Zirconias processed without additive phases were also examinedWithout additives, grain boundaries were depleted in zirconium and enriched in yttrium. In 3Y-TZP with I wt% borosilicate glass, silicon was observed only at triple points, but not in grain boundaries. In 3Y-TZP with 1 wt% barium silicate glass, barium was observed both along grain boundaries and at triple points, whereas silicon was detected only within the triple points. This suggests either the composition of the additive phase at the grain boundary is different from that at the triple points, or that barium ions segregate to grain boundaries during processing. In 8Y-CSZ with I wt% silica, silicon was observed in grain boundaries by an EDS spatial differencing technique. In 8Y-CSZ with 10 wt% alumina, EDS revealed aluminum at all grain boundaries examined


Author(s):  
R. Levi-Setti ◽  
K. K. Soni ◽  
J. M. Chabala ◽  
A. M. Thompson

The significance of grain boundaries in controlling processing and properties of ceramics is widely acknowledged. Through the addition of suitable dopants to ceramics, their processability and properties can be improved. These dopants may segregate to grain boundaries, but the characterization of boundary chemistry is a challenging task. Studies of segregation phenomena require the application of high-lateralresolution techniques such as STEM/AEM or surface sensitive techniques such as AES, XPS. These techniques require rigorous sample preparation and have their limitations.The scanning ion microprobe is a powerful tool that has exhibited unprecedented potential in the characterization of grain boundaries in ceramics. When interfaced to a mass spectrometer (magnetic sector in our case), this instrument allows mapping of many trace elements at nanometer level in bulk specimens. The combination of excellent sensitivity and high spatial resolution enables direct imaging of grain boundary segregants. The results thus obtained are free from artifacts that typically complicate analysis with broad beam, non-imaging techniques.


Sign in / Sign up

Export Citation Format

Share Document