Neutron irradiation and annealing of 10B doped chemical vapor deposited diamond films

1995 ◽  
Vol 10 (10) ◽  
pp. 2523-2530 ◽  
Author(s):  
S.A. Khasawinah ◽  
Galina Popovici ◽  
J. Farmer ◽  
T. Sung ◽  
M.A. Prelas ◽  
...  

10B doped diamond films grown by hot filament chemical vapor deposition were neutron irradiated at moderately high fluence levels. The as-irradiated and annealed samples, along with an unirradiated sample, were analyzed using Raman spectroscopy and x-ray diffraction. It was found that a non-diamond amorphous phase was formed on irradiation. This phase transformed back to diamond on annealing. No graphite formation was observed. A comparison with nanodiamond powder was made. A similarity between irradiated diamond films and nanocrystalline diamond powder is discussed.

1995 ◽  
Vol 10 (7) ◽  
pp. 1764-1771 ◽  
Author(s):  
D. Ganesana ◽  
S.C. Sharma

We have studied effects of hydrogen on texture in diamond films grown by hot filament assisted chemical vapor deposition by utilizing x-ray diffraction (XRD). We present results for the relative intensities of the XRD peaks originating from the (111). (220), and (400) crystallographic planes as functions of CH4/H2 makeup during growth and post-growth H2 treatment of the films. The texture of the films can be controlled by varying composition of the CH4/H2 mixture during growth and also by subjecting films to hydrogen treatment. The complementary characterization of these films by XRD, Raman spectroscopy, and positron annihilation techniques exemplifies a correlation among film texture, diamond contcnt, and dcnsity of the microvoids in the films.


ChemInform ◽  
2010 ◽  
Vol 28 (32) ◽  
pp. no-no
Author(s):  
M. S. HAQUE ◽  
H. A. NASEEM ◽  
A. P. MALSHE ◽  
W. D. BROWN

2000 ◽  
Vol 288 (2) ◽  
pp. 217-222 ◽  
Author(s):  
O Durand ◽  
R Bisaro ◽  
C.J Brierley ◽  
P Galtier ◽  
G.R Kennedy ◽  
...  

1996 ◽  
Vol 423 ◽  
Author(s):  
Dong-Gu Lee ◽  
Rajiv K. Singh

AbstractWe have developed a method for <111> oriented diamond film synthesis using micron-sized diamond particles. Different size of diamond powders were electrophoretically seeded on silicon substrates using diamond suspensions in organic solvents (acetone, methanol, and ethanol). Diamond suspension in acetone was found to be the best for obtaining uniform diamond seeding by electrophoresis. The thickness of diamond seeded films was changed by varying the applied voltage to observe the effect on the orientation of diamond particles. Then diamond films were deposited by the hot filament chemical vapor deposition (HFCVD) process. A preferred orientation with <111> direction normal to the substrate was obtained for monolayer coatings. The surface morphology, crystal orientation, and quality of diamond films were investigated using scanning electron microscopy, x-ray diffractometry, and Raman spectroscopy.


1996 ◽  
Vol 441 ◽  
Author(s):  
Yan Chen ◽  
D. J. Johnson ◽  
R. H. Prince ◽  
Liping Guo ◽  
E. G. Wang

AbstractCrystalline C-N films composed of α- and β-C3N4, as well as other C-N phases, have been synthesized via bias-assisted hot-filament chemical vapor deposition using a gas mixture of nitrogen and methane. Scanning electron microscopy(SEM), energy dispersive X-ray (EDX) analysis, X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to characterize the films. Lattice constants of the α- and β-C3N4 phases obtained coincide very well with the theoretical values. In addition to these phases, two new C-N phases in the films have been identified by TEM and XRD; one having a tetragonal structure with a = 5.65 Å, c = 2.75Å, and the second having a monoclinic structure with a = 5.065 Å, b= 11.5 Å, c = 2.801 Å and β = 96°. Their stoichiometric values and atomic arrangements have not yet been identified. Furthermore, variation in growth parameters, for example methane concentration, bias voltage, etc., can yield preferred growth of different C-N phases.


1989 ◽  
Vol 162 ◽  
Author(s):  
Jerry Czarnecki ◽  
David Thumim

ABSTRACTWeight recording using a thermobalance type Cahn TG-171 has been applied to study Hot, Filament Enhanced Chemical Vapor Deposition (HFCVD) of carbon films from methane. Changes in the deposition rates during each individual process may indicate four stages of the deposition kinetics: 1- generation of nuclei (slow, linear); 2- growth on nuclei (exponential increase); 3- aggregation of crystals (slowing); 4- growth on the surface of diamond film, completely covering the substrate (linear). An attempt to determine the concentration of graphite in the deposited layer, based on differences in oxidation rates of diamond and graphite has been proposed, as supplementary to X-ray diffraction and Raman spectroscopy.


2014 ◽  
Vol 802 ◽  
pp. 180-185 ◽  
Author(s):  
Nazir M. Santos ◽  
Tatiane M. Arantes ◽  
Neidênei G. Ferreira ◽  
Mauricio R. Baldan

The purpose of this work is to study the structural and morphological modification of the surface of the n-type diamond electrodes as a function of nitrogen doping. The characterizations of these electrodes were made using Raman Spectroscopy, Contact Angle, X-ray diffraction and Scanning Electron Microscopy (SEM). The nitrogen-doped diamond (NDD) electrodes were produced using Hot Filament-assisted Chemical Vapor Deposition method (HFCVD) from methane, hydrogen and nitrogen in the gas mixture. The results from Raman spectroscopy show that the diamond films obtained with nitrogen addition presented one large band at 1100-1700 cm-1. The SEM images showed that the variation in the nitrogen doping influenced the growth rate of films by promoting changes in the sizes of grains from microcrystalline to nanocrystalline texture. This behavior supported the results obtained from X-ray diffraction analyses. It was possible to verify a decrease in the crystallite size as a function of the nitrogen increase.


1994 ◽  
Vol 339 ◽  
Author(s):  
G. Popovici ◽  
C. H. Chao ◽  
M. A. Prelas ◽  
E. J. Charlson ◽  
J. M. Meese

ABSTRACTSmooth diamond films have been grown by hot filament chemical vapor deposition under d.c. bias on mirror-polished Si substrates. Films a few micrometers thick were obtained in 30 minutes. Raman spectra showed very broad diamond peaks. X-ray diffraction showed the presence of diamond and also other carbon phase with a line 2.11 Å. With time, the films apparently underwent a phase transformation.


1990 ◽  
Vol 34 ◽  
pp. 543-555
Author(s):  
Richard F. Hamilton ◽  
Diwakar Garg ◽  
Keith A. Wood ◽  
David S. Hoover

AbstractSynthesizing thin diamond films by chemical vapor deposition (CVD) is the most recent and technologically important development in the thin-film field. Thin diamond films are useful in many applications because of their unique physical, chemical, optical, and electronic properties.To assess thin diamond films’ suitability for support membranes in X-ray lithography, X-ray diffraction was used to characterize the crystal structure and orientation of these films deposited on silicon wafers by hot-filament assisted CVD. X-ray transmission properties of free-standing thin diamond films prepared by selectively etching silicon substrates were characterized by X-ray fluorescence in short and long wavelength regions.This paper discusses conventional and grazing incidence diffraction techniques used to study the crystal structure of thin diamond films and compares the results with film morphology. It also describes X-ray transmission properties of these films in terms of Beer's Law, the mass absorption coefficient, and the wavelength of attenuated radiation. Finally, it reveals the long wavelength regions for optimum X-ray lithography operations using polycrystalline diamond (PCD) film.


1996 ◽  
Vol 10 (12) ◽  
pp. 567-571 ◽  
Author(s):  
YAN CHEN ◽  
E.G. WANG ◽  
FENG CHEN ◽  
LIPING GUO

High quality crystalline C–N films have been synthesized via hot filament chemical vapor deposition using a gas mixture of nitrogen and methane. Scanning electron microscopy images show that a high density of crystalline clusters has been achieved. The clusters are composed of small columnar crystals (20–200 nm across) with hexagonal facets. Energy dispersive X ray analysis indicates a relative nitrogen:carbon composition of 1.30–2.5. X ray diffraction results indicate the films composed of β- and α- C 3 N 4 phases. Together with transmission electron microscopy analyses, we suggest that an interfacial layer C 3−x Si x N 4 is formed between the silicon substrate and the crystalline carbonnitride films.


Sign in / Sign up

Export Citation Format

Share Document