Microstructure and Properties of Nanosemicrystalline Si3N4 Ceramics with Doped Sintering Additives: Part II. Phase Transformation and Microstructural Control

1998 ◽  
Vol 13 (9) ◽  
pp. 2588-2596 ◽  
Author(s):  
K. H. Ryu ◽  
J-M. Yang

The low temperature pressureless sintering of a nanosized Si3N4 powder with doped sintering additives was investigated. The microstructural evolution during sintering at different temperatures was analyzed using x-ray diffraction and scanning electron microscopy. The effect of using nanosized Si3N4 powder as a catalyst to accelerate the α→β–Si3N4 transformation of a commercial Si3N4 powder with larger particle sizes was also investigated. Finally, two stage sintering was used to study the feasibility of controlling the microstructure and the mechanical properties of the nanosized silicon nitride.

2019 ◽  
Vol 27 (2) ◽  
pp. 228-237 ◽  
Author(s):  
Rashed T. Rasheed ◽  
Sariya D. Al-Algawi ◽  
Rosul M. N.

Manganese dioxide (MnO2) nanopowder has been synthesized by hydrothermal method. MnO2 was annealed at different temperatures (250, 400, 550, 700˚C). The crystal structure and surface morphology of these nanostructures were characterized by X-ray diffraction (XRD), Atomic Force Microscope (AFM) and Scanning Electron Microscopy (SEM). The catalase mimic activity (catalytic activity) of MnO2 against hydrogen peroxide (H2O2) was studied by using the new method and found that 400˚C is the best annealing temperature.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hamdi Muhyuddin Barra ◽  
Soo Kien Chen ◽  
Nizam Tamchek ◽  
Zainal Abidin Talib ◽  
Oon Jew Lee ◽  
...  

Abstract Synthesis of thermochromic VO2 (M) was successfully done by annealing hydrothermally-prepared VO2 (B) at different temperatures and times. Conversion of the metastable VO2 (B) to the thermochromic VO2 polymorph was studied using thermogravimetric analyzer (TGA) under N2 atmosphere. Moreover, the phase and morphology of the synthesized samples were studied using X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM), respectively. Accordingly, the XRD scans of all the annealed samples exhibited the presence of monoclinic VO2 (M), while the FE-SEM images of the samples showed the formation of nanorods and nanospheres, particularly those heated at high temperatures (650 °C and 700 °C). Meanwhile, differential scanning calorimetry (DSC) was used to measure the phase transition temperature (τc), hysteresis, and enthalpy of the prepared VO2. Based on these results, all samples displayed a τc of about 66 °C. However, the hysteresis was high for the samples annealed at lower temperatures (550 °C and 600 °C), while the enthalpy was very low for samples heated at lower annealing time (1.5 h and 1 h). These findings showed that crystallinity and nanostructure formation affected the thermochromic properties of the samples. In particular, the sample annealed at 650 °C showed better crystallinity and improved thermochromic behavior.


2020 ◽  
Vol 74 (10) ◽  
pp. 1280-1286
Author(s):  
Lucas Train Loureço ◽  
Celso de Araujo Duarte ◽  
Dietmar William Foryta ◽  
Bruno Guimarães Titon ◽  
Eleonora Maria Gouvêa Vasconcellos

The present work reports the results of structural and optical investigations in samples of natural dolomite, subjected to thermal treatment at different temperatures (500 ℃ to 700 ℃) and times (one up to three hours). The motivation is the evaluation of the changes that may occur in carbonaceous asteroids and meteorites, respectively, subjected to the action of the solar radiation and heated during the fall in the atmosphere. We carried out scanning electron microscopy, electron dispersive spectroscopy, X-ray diffraction, optical reflectance and photoluminescence measurements


2007 ◽  
Vol 336-338 ◽  
pp. 669-671
Author(s):  
Yan Yi Liu ◽  
Wei Pan

BaTiO3 powder was synthesized from BaCO3 and TiO2 using a domestic microwave oven. The samples were synthesized under different temperatures with various holding times. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to examine the phase compositions and morphologies of the result samples. The main phase obtained at 950°C was BaTiO3, and the intermediate phases Ba2TiO4 and Ba4TiO9 were also detected. The pure, well-crystallized BaTiO3 powder could be obtained at 1050°C within 10 minutes and the particle size ranged from 300~500nm. In comparison with conventional synthesis, faster speed and finer grains could be achieved through microwave heating.


2017 ◽  
Vol 891 ◽  
pp. 473-477
Author(s):  
Renáta Verbová ◽  
Viktor Kavečanský ◽  
Pavel Diko ◽  
Samuel Piovarči

Crystalline barium cerate was synthesized by oxalate coprecipitation from nitrates of barium and cerium [1]. The oxalate precursor prepared by chemical methods was calcined at different temperatures up to 950°C. The barium cerate was studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). X-ray diffraction investigation enables the determination of the phases that originate at different stages of synthesis and the crystal structure of final barium cerate, as well. From XRD patterns the average size of coherent regions was estimated by using Halder-Wagner method [2]. Both size and shape of crystallites were also studied by scanning electron microscopy. It was found that crystallites of barium cerate arise within the initial particles of the oxalate precursor.


2012 ◽  
Vol 512-515 ◽  
pp. 676-680 ◽  
Author(s):  
Liang Li ◽  
Ai Guo Zhou ◽  
Li Bo Wang ◽  
Fei Xiang Hu

In this paper, titanium silicon carbide (Ti3SiC2) powders were synthesized from TiH2 as Ti source by pressureless sintering in flowing argon atmosphere without preliminary dehydrogenation. Starting materials are powder mixtures with the mole ratio of 3TiH2/Si/2C or 3TiH2/SiC/C. Both kinds of starting materials were sintered in a tube furnace at the temperature range from 1300°C to 1500°C for 10~180min in flowing argon atmosphere. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to characterize the phase compositions and morphology of the products after different treatments. It was showed that almost single phase Ti3SiC2 powder (94.7 wt.%) can be synthesized by pressureless sintering from 3TiH2/Si/2C powders at 1400~1425°C for about 180min or from 3TiH2/SiC/C powders at 1425~1500°C for about 180min. From SEM micrographs, as-synthesized samples were porous. Most plate-like grains were about 5~10 μm in diameter and 1~2 μm in thickness. The speed of temperature increasing is an important factor to affect the purity of as-synthesized Ti3SiC2.


2010 ◽  
Vol 09 (06) ◽  
pp. 549-552
Author(s):  
AYACHE RACHID ◽  
BOUABELLOU ABDERRAHMANE ◽  
EICHHORN FRANK

The processes in the synthesis of a thin layer of hexagonal YSi 2-x phase on a single-crystal Si (111) substrate by implantation of 195 keV Y ions with a dose of 2 × 1017 Y +/ cm 2 at 300°C followed by annealing in an N2 atmosphere at different temperatures for 1 h are investigated. The characterization of the as-implanted and annealed samples is performed using Rutherford backscattering spectrometry (RBS) and X-ray diffraction (XRD) pole figures. Scanning electron microscopy (SEM) was used to view the surface topography. The results show that the orientation relationship between the YSi 2-x layer and Si substrate is YSi 2-x(0001)// Si (111) and YSi 2-x[11–20]// Si [110].


Author(s):  
Jeannette Aumo ◽  
Jyri-Pekka Mikkola ◽  
Jose Bernechea ◽  
Tapio Salmi ◽  
Dmitry Murzin

Citral was hydrogenated over Ni on alumina wash-coated cordierite monoliths in a screw impeller batch reactor. The prepared catalyst was characterized by means of nitrogen adsorption (BET), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The performance of the monolith reactor configuration at different temperatures and pressures was compared. Reasonable reaction rate was obtained even after 18 consecutive experiments without regeneration of the catalyst. At temperatures up to 80°C and 5 bar pressure the selectivity to citronellal was ca. 93 %. Increasing the temperature to 100°C decreased the selectivity of citronellal to 65 %. At 100°C and 40 bar pressure the selectivity of citronellal was diminished to 1.4 % due to the formation of the fully hydrogenated product 3,7-dimethyloctanol with a selectivity of 93 %.


2011 ◽  
Vol 287-290 ◽  
pp. 253-256
Author(s):  
Zhan Shen Zheng ◽  
Rui Jiao Li ◽  
Pei Qi Yan ◽  
Rong Yang ◽  
Peng Li

Superhydrophobic film was fabricated mainly by ethyl silicate (TEOS) and ethanol (EtOH) using sol-gel method. SiO2 gel and samples coated with SiO2 sol were calcined at different temperatures, and their morphology and composition were studied using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The results indicate that increasing calcining temperature appropriately improved the bond of nanoparticles of film successfully. Furthermore, there were only amorphous SiO2 and hydroxyl existing in the calcined film which would be benefit for the further modification.


2006 ◽  
Vol 517 ◽  
pp. 222-226 ◽  
Author(s):  
Rosiyah Yahya ◽  
A. Hassan ◽  
Z. Aiyub

The structural studies of potassium hexatitanates prepared under both hydrothermal and solid state conditions were carried out. Fourier Transform Infra-red spectroscopy (FTIR) results revealed that potassium hexatitanate structure consisted of TiO6 octahedral units irrespective of the preparative conditions and particle size. X-ray diffraction (XRD) results showed that the only potassium hexatitanate phase was detectable and the structure is of the Wadsley-type consisting of chains of Ti-O octahedral sharing edges with tunnels in which the potassium ions are located. From scanning electron microscopy (SEM) results, the different preparative conditions resulted in different particle sizes and morphologies of the potassium hexatitanate formed.


Sign in / Sign up

Export Citation Format

Share Document