Interface modification for increased fracture toughness in reaction-formed yttrium aluminum garnet/alumina eutectic composites

1999 ◽  
Vol 14 (10) ◽  
pp. 3907-3912 ◽  
Author(s):  
Luke N. Brewer ◽  
Derrick P. Endler ◽  
Shani Austin ◽  
Vinayak P. Dravid ◽  
Joseph M. Collins

The validity of controlling interfacial toughness in reaction-formed composites was explored using solid-state reaction processing and microanalysis techniques. A variety of rare-earth oxides was added to a yttrium aluminum garnet (YAG)/alumina powder mixture and then melted in air. Some melts retained the crystallography and microstructure of the pure, binary YAG–alumina eutectic. Using scanning transmission electron microscopy in conjunction with energy dispersive X-ray spectroscopy, rare-earth ions were observed both to segregate to the YAG/alumina interface and to form a third phase. Some evidence of increased crack deflection at these interfaces was observed via indentation fracture.

1971 ◽  
Vol 26 (25) ◽  
pp. 1570-1573 ◽  
Author(s):  
R. Wolfe ◽  
M. D. Sturge ◽  
F. R. Merritt ◽  
L. G. Van Uitert

2019 ◽  
Vol 61 (5) ◽  
pp. 848
Author(s):  
У.В. Валиев ◽  
Gary W. Burdick ◽  
Р.Р. Вильданов ◽  
R.Yu. Rakhimov ◽  
Dejun Fu

AbstractThe spectra of luminescence and magnetic circular polarization of luminescence of praseodymium–yttrium aluminum garnet Pr^3+ : Y_3Al_5O_12 (PrYAG) are studied in the visible spectral region at temperature T = 300 K. An analysis of spectral dependences of magnetooptical and optical spectra makes it possible to identify optical 4  f –4  f -transitions between Stark sublevels of multiplets ^3 P _0, ^3 P _1, ^3 Н _5, and ^3 Н _6 in PrYAG. It was shown that an important role in the spectrum of the degree of magnetic circular polarization of luminescence of this paramagnetic garnet is played by the effect of quantum-mechanical J – J mixing of states of Stark singlets ^3 Н _5 and ^3 Н _6 of non-Kramer rare-earth ion Pr^3+ in the “green” luminescence band related to forbidden 4  f → 4  f transition ^3 P _0 → ^3 Н _5 in the visible spectral region. To interpret the spectra of magnetic circular polarization of luminescence, the energy of experimentally determined Stark sublevels of multiplets under study, their irreducible representations and wave functions determined by numerical simulation of the energy spectrum of the rare-earth ion Pr^3+ in the garnet structure are used.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Thalles M. F. Marques ◽  
Cleanio Luz-Lima ◽  
Marco Sacilloti ◽  
Kazunori Fujisawa ◽  
Nestor Perea-Lopez ◽  
...  

The optical properties of titanate nanotubes (TiNts) intercalated with rare earths (RE) ions were intensively investigated in this study. To prepare the nanomaterials, sodium titanate nanotubes (Na-TiNts) were submitted to ion exchange reactions with different rare earth elements (RE: Pr3+, Er3+, Nd3+, and Yb3+). To the best of our knowledge, it is the first time that these RE-TiNts were synthesized. All samples were characterized by Raman spectroscopy, X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy (EDS). Furthermore, the optical properties were examined using photoluminescence spectroscopy (PL) and UV-Vis-NIR absorption spectroscopy. The PL intensity (visible range) of the RE-TiNt samples showed a strong dependence when the temperature was decreased down to 20 K. This PL enhancement probably was promoted by electronic modifications in titanate layer band gap and/or interface charge transfers due to RE ions intercalation.


2001 ◽  
Vol 16 (6) ◽  
pp. 1795-1805 ◽  
Author(s):  
Bradley R. Johnson ◽  
Waltraud M. Kriven

The kinetics and pathways for crystallization of solid, amorphous, yttrium aluminum garnet (YAG) were studied using isothermal differential thermal analysis, x-ray diffraction, and transmission electron microscopy. The activation energy for crystallization was 437 KJ/mol and the measured Avrami exponent was 2.74, which corresponded to three-dimensional crystal growth with a constant number of nuclei. Time–temperature–transformation (T–T–T) curves were developed from the data to predict crystallization rates as a function of temperature. The crystallization pathway for YAG in this system is compared to others reported in the literature.


1998 ◽  
Vol 13 (4) ◽  
pp. 856-860 ◽  
Author(s):  
Masashi Inoue ◽  
Toshihiro Nishikawa ◽  
Tomoyuki Inui

The reactions of rare earth (RE) acetates with iron acetylacetonate in 1,4-butanediol at 300 °C (glycothermal reaction) yielded two novel phases depending on the ionic size of the RE element: one was obtained for Er-Lu and the other for Tb and Dy. The former phase was hexagonal REFeO3, while the latter phase has not been identified. The reaction of Y or Ho acetate yielded the mixture of these two phases. When the reactions were carried out in the presence of seed crystals of yttrium aluminum garnet (Y3Al5O12), these phases were not formed but RE iron garnet (RE3Fe5O12) grew on the seed, which suggests that spontaneous nucleation of RE iron garnet does not occur, but crystal growth proceeds easily under the glycothermal conditions. Hydrothermal reaction of the same starting materials yielded a mixture of Fe2O3 and an amorphous RE phase.


Sign in / Sign up

Export Citation Format

Share Document