Influence of CaO–SiO2 ratio on the chemistry of intergranular films in liquid-phase sintered alumina and implications for rate of erosive wear

2001 ◽  
Vol 16 (3) ◽  
pp. 652-665 ◽  
Author(s):  
Rik Brydson ◽  
Peter C. Twigg ◽  
Fiona Loughran ◽  
Frank L. Riley

Polycrystalline aluminas sintered with 10 wt% additions of calcium oxide (CaO) and silica (SiO2) in varying molar ratios were fabricated via precipitation, calcination, and hot pressing. Alumina microstructures were analyzed by scanning electron microscopy in terms of their mean grain size, grain size distribution, and grain aspect ratios. High-resolution transmission electron microscopy (HRTEM) showed the presence of an amorphous intergranular glassy phase at two- and three-grain boundaries. The intergranular film width at two-grain boundaries, determined by HRTEM, appeared to vary with the [CaO]:[SiO2] ratio of the additive as did the chemical composition and local chemistry, determined by high-resolution analytical transmission electron microscopy and scanning transmission electron microscopy (using both energy dispersive x-ray and electron energy loss spectroscopy). The factors influencing the erosive wear rate are discussed including the chemistry and associated fracture energy of the intergranular glassy film. Wet erosive wear rates of the densified materials were determined and had a strong dependence on the [CaO]:[SiO2] ratio in the additive.

1999 ◽  
Vol 588 ◽  
Author(s):  
Daisuke Takeuchi ◽  
Hideyuki Watanabe ◽  
Sadanori Yamanaka ◽  
Hideyo Okushi ◽  
Koji Kajimura ◽  
...  

AbstractThe band-A emission (around 2.8 eV) observed in high quality (device-grade) homoepitaxial diamond films grown by microwave-plasma chemical vapor deposition (CVD) was studied by means of scanning cathodoluminescence spectroscopy and high-resolution transmission electron microscopy. Recent progress in our study on homoepitaxial diamond films was obtained through the low CH4/H2 conditions by CVD. These showed atomically flat surfaces and the excitonic emission at room temperature, while the band-A emission (2.95 eV) decreased. Using these samples, we found that the band-A emission only appeared at unepitaxial crystallites (UC) sites, while other flat surface parts still showed the excitonic emission. High-resolution transmission electron microscopy revealed that there were grain boundaries which contained π-bonds in UC. This indicates that one of the origin of the band-A emission in diamond films is attributed to π bonds of grain boundaries.


1981 ◽  
Vol 5 ◽  
Author(s):  
David R. Clarke

ABSTRACTThe principal high resolution transmission electron microscopy techniques used in characterizing grain boundaries in electronic ceramics are described, including those recently developed for detecting the presence of extremely thin (∼10Å) intergranular phases. The capabilities of the techniques are illustrated with examples drawn from studies of ZnO varistors, PTC BaTiO3 devices and boundary layer capacitors.


1991 ◽  
Vol 238 ◽  
Author(s):  
Elsie C. Urdaneta ◽  
David E. Luzzi ◽  
Charles J. McMahon

ABSTRACTBismuth-induced grain boundary faceting in Cu-12 at ppm Bi polycrystals was studied using transmission electron microscopy (TEM). The population of faceted grain boundaries in samples aged at 600°C was observed to increase with heat treatment time from 15min to 24h; aging for 72h resulted in de-faceting, presumably due to loss of Bi from the specimen. The majority of completely faceted boundaries were found between grains with misorientation Σ=3. About 65% of the facets of these boundaries were found to lie parallel to crystal plane pairs of the type {111}1/{111]2- The significance of these findings in light of recent high resolution electron microscopy experiments is discussed.


1995 ◽  
Vol 398 ◽  
Author(s):  
W. Sinkler ◽  
C. Michaelsen ◽  
R. Bormann

ABSTRACTInverse melting of bcc Nb4sCr55 is investigated using transmission electron microscopy, high-resolution TEM and electron diffraction. It is shown that the transformation to the amorphous phase initiates at the bcc grain boundaries. The transformation results in an increase in incoherence, evidenced by a loss of bend contours. Some anisotropy is found in the amorphous phase produced by inverse melting, which is associated in HRTEM with preferentially oriented but discontinuous and distorted fringes. The results are consistent with the production of an amorphous phase by inverse melting.


Sign in / Sign up

Export Citation Format

Share Document