Modeling of the surface tension of liquid Fe-P alloy by calculation of liquidus line in Fe-P binary system

2006 ◽  
Vol 21 (6) ◽  
pp. 1399-1408 ◽  
Author(s):  
Han S. Kim ◽  
Y. Kobayashi ◽  
K. Nagai

The surface tension of the Fe-P binary liquid solution was computed using a Butler's model in wide composition and temperature ranges by adopting the activity coefficient data that were evaluated from the phase diagram calculation. In the surface tension modeling, the Fe-P binary system was assumed as the Fe-Fe3P pseudo-binary system. The results of the computation were critically compared with the experimental data of the literature considering the effects of the size of the adsorbed elements and the interactions among them. The results of the computation at 1823 K showed good agreement with the selected experimental data of the literature in a wide composition range from 0 to 15 mass%P. Furthermore, the results of the computation at 0.5 mass%P showed good correlation with the selected experimental data of the literature in a wide temperature range from 1823 K to 1923 K.

2008 ◽  
Vol 59 (10) ◽  
Author(s):  
Oana Ciocirlan ◽  
Olga Iulian

Excess molar volumes, VE, have been measured for binary liquid mixtures of dimethyl sulfoxide (DMSO) with xylenes (o- xylene, m- xylene and p-xylene) at 298.15 K and atmospheric pressure. The excess volumes values were found negative over the entire composition range for all the mixtures. The VE values increase in order: p-xylene[ m-xylene[ o-xylene. The Flory and Prigogine-Flory-Patterson (PFP) thermodynamic theories of solution have been used to analyze the VE data. The calculated VE values were found to be in good agreement with the experimental data.


2020 ◽  
Vol 49 (1-2) ◽  
pp. 89-105 ◽  
Author(s):  
J. BRILLO ◽  
J. WESSING ◽  
H. KOBATAKE ◽  
H. FUKUYAMA

Surface tensions of electromagnetically levitated liquid Ti-samples were measured under the influence of oxygen. For this purpose, Ti-O samples were prepared by adding different amounts of TiO2 powder to pure Ti. The surface tension was found to strongly depend on the bulk oxygen mole fraction determined by chemical analysis. The results could be described by a simple model presented in the present work. In this model the Butler equation is applied and the formation of TiO2 – associates are taken into account. Non-ideal interactions ΔH≠0 between titanium and the associates also need to be taken into account. Good agreement with the experimental data is evident and also with a different model developed earlier by us.


2021 ◽  
Vol 410 ◽  
pp. 725-729
Author(s):  
Larisa A. Makrovets ◽  
Olga V. Samoilova ◽  
Igor V. Bakin

Thermodynamic modeling of phase equilibria with the subsequent construction of the phase diagram of the SrO–Al2O3 system has been carried out. To calculate the activities of the oxide melt in the course of this work, we used the approximation of the theory of subregular ionic solutions, with the most optimal values of the energy parameters Q1112 = –104 349: Q1122 = –217 689; Q1222 = –104 436 J/mole. The results obtained for the liquidus line in this work are in good agreement with the literature experimental data. In the course of the calculation, the values of the equilibrium constants for the formation of strontium aluminates from the components of the oxide melt were estimated.


2019 ◽  
pp. 21-27
Author(s):  
Mauricio García-Martínez ◽  
Benjamín Ibarra-Tandi ◽  
Daniel Porfirio Luis-Jiménez ◽  
Jorge López-Lemus

The surface tension of some binary and ternary mixtures was calculated by means of molecular dynamics simulations in a canonical set. The analyzed mixtures were oxygen-argon, nitrogen-argon and oxygen-nitrogen-argon. The force field for argon was recalculated in order to reproduce the experimental surface tension. The corresponding force fields for O2 and N2 were taken from a previous work [Mol. Simul. 45 (2019) 958-966], where it was shown that such force fields reproduce the experimental surface tension curves, as pure fluids. The nitrogen-argon surface tension was calculated for several mole fractions of argon. The obtained curve was compared with those experimental data and a good agreement was found. The standard Lorentz-Berthelot combining rules were employed. For the oxygen-argon mixture it was necessary to modify the cross term of the combining rules in order to reproduce theoretical and experimental data. The surface tension of the ternary mixture was also estimated varying the mole fraction of argon at a certain concentration of oxygen and nitrogen, previously adjusted. Several temperatures were used in order to show a tendency mostly at relatively low temperatures. After comparing the available experimental data, which are scarce, a good agreement was observed.


2019 ◽  
Vol 37 (3) ◽  
pp. 496-502 ◽  
Author(s):  
A. Sadoun ◽  
S. Mansouri ◽  
M. Chellali ◽  
N. Lakhdar ◽  
A. Hima ◽  
...  

AbstractIn this work, we have presented a theoretical study of Au/Ni/GaN Schottky diode based on current-voltage (I-V) measurement for temperature range of 120 K to 400 K. The electrical parameters of Au/Ni/GaN, such as barrier height (Φb), ideality factor and series resistance have been calculated employing the conventional current-voltage (I-V), Cheung and Chattopadhyay method. Also, the variation of Gaussian distribution (P (Φb)) as a function of barrier height (Φb) has been studied. Therefore, the modified ( {( {\ln \left( {{{{\rm{I}}_0 } \over {{\rm{T}}^2 }}} \right) - \left( {{{{\rm{q}}^2 \sigma _{{\rm{s}}0}^2 } \over {2{\rm{kT}}^2 }}} \right) = \ln ( {{\rm{AA}}^*} ) - {{{\rm{q}}\emptyset_{{\rm B}0} } \over {{\rm{kT}}}}} ){\rm{vs}}.( {{1 \over {{\rm{kT}}}}} )} ) relation has been extracted from (I-V) characteristics, where the values of ΦB0 and {\rm{A}}_{{\rm{Simul}}}^* have been found in different temperature ranges. The obtained results have been compared to the existing experimental data and a good agreement was found.


Author(s):  
D. McWilliam ◽  
R. K. Duggins

The variations of density and sonic velocity with gas content have been calculated for a liquid containing gas bubbles. Taking liquid compressibility and surface tension into account, the effects of pressure and bubble size have been assessed. Particular attention has been focused on air-water mixtures, and very good agreement has been obtained with the limited amount of experimental data available.


Author(s):  
Y. Sreedevi ◽  
Ch. Srinivasu ◽  
Sk. Fakruddin ◽  
K. Narendra ◽  
B.R. Venkateswara Rao ◽  
...  

Ultrasonic velocity is measured experimentally at 3MHz frequency in the binary liquid mixture containing aniline and anisole at different temperatures over the entire composition range and theoretical values of ultrasonic velocity have been evaluated by using Nomoto’s relation, Impedance relation, Van Dael ideal mixture relation. These theoretical values are compared with the experimental values. A good agreement has been found between experimental and theoretical ultrasonic velocities.


2010 ◽  
Vol 654-656 ◽  
pp. 2442-2445 ◽  
Author(s):  
Guo Jun Zhou ◽  
De Chang Zeng

The Fe–Pr binary system was thermodynamic evaluation by means of the CALPHAD method based on phase diagram experimental data from the literature and a few values of the mixing enthalpy in the liquid phase obtained by the Miedema theory technique. Each of the selected data values is given a certain weight, which is chosen and adjusted based on the thermodynamic data and diagram phase data. A consistent thermodynamic description of the Fe–Pr binary system is presented: only one intermediate compound, Fe17Pr2, is stable in the system and forms peritectically at 1371K. An eutectic reaction L↔Pr+ Fe17Pr2 occurs at 939K and the eutectic liquid contains 82 at% Pr, five solid solution phases (Fe-rich αFe, γFe and δFe, Pr-rich αPr and βPr) and the liquid solution phase were considered in the evaluation. The intermediate phase was treated as stoichiometric compound, the solid solutions as ideal and the liquid solution phase by the Redlich–Kister formalism. The calculated phase diagram and thermodynamic properties are in good agreement with available experimental data.


2008 ◽  
Vol 131 (1) ◽  
Author(s):  
W. Saleh ◽  
R. C. Bowden ◽  
I. G. Hassan ◽  
L. Kadem

The onset of gas entrainment in a single downward discharge, from a stratified gas-liquid region, was modeled. The discharge was modeled as a point-sink and Kelvin–Laplace’s equation was used to incorporate surface tension effects. Consequently, a criterion to characterize the dip radius of curvature, at the onset of gas entrainment, was required. The dip geometry was experimentally investigated and a correlation was developed relating the dip radius of curvature to the discharge Froude number. The correlation was used in conjunction with the theoretical model. It was found that the predicted critical height demonstrated good agreement with experimental data with the three-dimensional point-sink approach, while poor agreement using the two-dimensional finite-branch approach was found. The inclusion of surface tension improved the model’s capability to predict the critical height, particularly at discharge Froude numbers below 1.


Author(s):  
S.L. Dahire ◽  
Y.C. Morey ◽  
P.S. Agrawal

The present study reports densities (ρ), viscosities (η) and ultrasonic speeds (U) of pure dioxane (DOX), anisole (ANS), toluene (TOL) and ethylbenzene (ETB) and their binary liquid mixtures over the entire composition range at 293, 298, 303, 308 and 313 K. From the experimental data excess molar volume (VmE), excess intermolecular free length (LfE), excess adiabatic compressibility (βE) and excess acoustic impedance (ZE) have been computed. The excess values were correlated using Redlitch-Kister polynomial equation to obtain their coefficients and standard deviations (σ). With increase in temperature, the binary mixture of DOX+ANS shows larger deviations in βE, LfE and smaller deviations in ZE, VmE. These results suggest that ANS has strong molecular interactions with DOX than ETB and TOL.


Sign in / Sign up

Export Citation Format

Share Document