Homogeneous flow of bulk metallic glass composites with a high volume fraction of reinforcement

2007 ◽  
Vol 22 (6) ◽  
pp. 1564-1573 ◽  
Author(s):  
X.L. Fu ◽  
Y. Li ◽  
C.A. Schuh

We present a systematic study of homogeneous deformation in a La-based bulk metallic glass and two in situ composites based on the same glass. In contrast to prior investigations, which focused on relatively dilute composites, in this work the reinforcement volume percentages were more concentrated at 37% and 52%—near or above the percolation threshold (35–40%). Hot uniaxial compressive testing was conducted over a wide strain rate range from 10−2to 10−5s−1at a temperature near the glass transition. For such concentrated composites, the homogeneous deformation behavior appeared to be dominated by the properties of the reinforcement phase; in the present case the La reinforcements deformed by glide-controlled creep. Post-deformation analysis suggested that bulk metallic glass matrix composites were susceptible to microstructural evolution, which appeared to be enhanced by deformation, in contrast with a stress-free anneal. Consequently, unreinforced bulk metallic glass appeared to be more structurally stable than its composites during deformation near the glass transition.

Metals ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 78 ◽  
Author(s):  
Fei Xie ◽  
Qingjun Chen ◽  
Jiwen Gao

The effects of the α-Fe phase on mechanical properties and cracking of laser 3D printing Fe-based bulk metallic glass composites were investigated. The elastic recovery and plasticity index were characterized by nanoindentation. As the volume fraction of the α-Fe phase increases from 23.66% to 52.38%, the elastic modulus of printed samples suddenly drops. The samples exhibit a lower deformation resistance, and the plasticity index increases gradually. When the volume fraction of the α-Fe phase is 67.84%, the interaction between the α-Fe phase and matrix phase is smaller during expansion shrinkage. As a result, cracking is easy to initiate, which leads to the highest crack rate of the printed sample. However, as the volume fraction of the α-Fe phase increases to 83.31%, the hard brittle phase was sandwiched between the α-Fe phases similar to the finger structure plays key role in the plastic deformation. The plastic deformation releases large amounts of stress concentrated at the boundary and suppresses crack formation.


2003 ◽  
Vol 18 (9) ◽  
pp. 2101-2108 ◽  
Author(s):  
M. H. Lee ◽  
D. H. Bae ◽  
D. H. Kim ◽  
D. J. Sordelet

To prevent catastrophic failure by propagating highly localized shear bands and to overcome the limited dimension of metallic glass, centimeter-scale Ni59Zr20Ti16Si2Sn3 bulk metallic glass matrix composites were fabricated by warm extrusion of a mixture of gas-atomized fully amorphous powders and ductile brass powders. After consolidation, the composite retained the fully amorphous matrix found in the gas-atomized powder combined with the brass second phase. The glass-transition and crystallization temperatures of the extruded material were the same as those of the starting powders. The confined ductile brass phase enabled the bulk metallic glass matrix composites to deform plastically under uniaxial compression at room temperature. The combination of strength and ductility in the inherently brittle Ni-based monolithic materials could be obtained by introducing a ductile phase in the bulk metallic glass matrix. However, control of the volume fraction and distribution of the ductile brass phase was important for the proper combination of the strength and plasticity.


2004 ◽  
Vol 19 (4) ◽  
pp. 1068-1076 ◽  
Author(s):  
Zan Bian ◽  
Tao Zhang ◽  
Hidemi Kato ◽  
Masashi Hasegawa ◽  
Akihisa Inoue

Mechanical properties and fracture characteristics of Zr-based bulk metallic glass (BMG) composites containing carbon nanotube (CNT) addition were investigated in detail. The interfacial reaction between the added CNTs and the glass matrix causes the formation of some V-shape nicks on the residual CNTs. These nicks have significant effect on the mechanical properties and fracture modes of the BMG composites. The compressive fracture strength increases with increasing the volume fraction of CNT addition at first, and starts to decrease gradually when the volume fraction of CNT addition is more than 5.0%. The fracture modes of the BMG composites also change from typical shear flow deformation behavior to completely embrittling fracture gradually. The V-shape nicks originating from the interfacial reaction are responsible for the decrease of fracture strength and the variation of fracture modes.


Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1419 ◽  
Author(s):  
Daniel Şopu ◽  
Xudong Yuan ◽  
Franco Moitzi ◽  
Mihai Stoica ◽  
Jürgen Eckert

Metallic glass composites with shape memory crystals show enhanced plasticity and work-hardening capability. We investigate the influence of various critical structural aspects such as, the density of crystalline precipitates, their distribution and size, and the structural features and intrinsic properties of the phase on the deformation behavior of metallic amorphous Cu 64 Zr 36 composites with B2 CuZr inclusions using molecular dynamics simulations. We find that a low density of small B2 inclusions with spacing smaller than the critical shear band length controls the formation and distribution of plastic zones in the composite and hinders the formation of critical shear bands. When the free path for shearing allows the formation of mature shear bands a high volume fraction of large B2 precipitates is necessary to stabilize the shear flow and avoid runaway instability. Additionally, we also investigate the deformation mechanism of composites with pure copper crystals for comparison, in order to understand the superior mechanical properties of metallic glass composites with shape memory crystals in more detail. The complex and competing mechanisms of deformation occurring in shape memory metallic glass composites allow this class of materials to sustain large tensile deformation, even though only a low-volume fraction of crystalline inclusions is present.


2021 ◽  
pp. 116963
Author(s):  
Devashish Rajpoot ◽  
R. Lakshmi Narayan ◽  
Long Zhang ◽  
Punit Kumar ◽  
Haifeng Zhang ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 579
Author(s):  
Ting Shi ◽  
Lanping Huang ◽  
Song Li

Structural relaxation and nanomechanical behaviors of La65Al14Ni5Co5Cu9.2Ag1.8 bulk metallic glass (BMG) with a low glass transition temperature during annealing have been investigated by calorimetry and nanoindentation measurement. The enthalpy release of this metallic glass is deduced by annealing near glass transition. When annealed below glass transition temperature for 5 min, the recovered enthalpy increases with annealing temperature and reaches the maximum value at 403 K. After annealed in supercooled liquid region, the recovered enthalpy obviously decreases. For a given annealing at 393 K, the relaxation behaviors of La-based BMG can be well described by the Kohlrausch-Williams-Watts (KWW) function. The hardness, Young’s modulus, and serrated flow are sensitive to structural relaxation of this metallic glass, which can be well explained by the theory of solid-like region and liquid-like region. The decrease of ductility and the enhancement of homogeneity can be ascribed to the transformation from liquid-like region into solid-like region and the reduction of the shear transition zone (STZ).


Sign in / Sign up

Export Citation Format

Share Document