Phase transition and dislocation nucleation in Cu–Nb layered composites during physical vapor deposition

2008 ◽  
Vol 23 (4) ◽  
pp. 1009-1014 ◽  
Author(s):  
Jian Wang ◽  
Richard G. Hoagland ◽  
Amit Misra

Using classical molecular dynamics simulations, we have investigated the growth of {111} Cu on Nb {110} surface. Our results reveal that the deposited Cu layer initially grows as body-centered cubic (bcc) and Vernier misfits are observed in the interface of bcc Cu and bcc Nb. As it continues to grow, the bcc Cu {110} transforms into face-centered cubic (fcc) Cu {111}. The phase transition starts after the bcc Cu layer has accumulated about 3 monolayers and is finished depending on deposition parameters. Nuclei of fcc Cu {111} form in the top surface of Cu and grow in plane and toward the interface. Partial dislocations in the fcc Cu layer nucleate during the late stage of the transition, and the stacking faults grow as the Cu layer thickens.

NANO ◽  
2018 ◽  
Vol 13 (03) ◽  
pp. 1850026
Author(s):  
Sergey Shityakov ◽  
Norbert Roewer ◽  
Carola Y. Förster ◽  
Hai T. Tran ◽  
Wenjun Cai ◽  
...  

The purpose of this study is to investigate polycrystalline lattices of aluminum (Al) under the stress–strain conditions in all-atom molecular dynamics simulations and Al alloys using X-ray diffraction. Isothermal uniaxial tension and compression of these polycrystalline lattices showed no dislocation nucleation peaks, which correspond only to the Al monocrystal form. The best tensile and compressive resistance characteristics were observed for a material with the highest grain number ([Formula: see text]) due to the significant reduction of the face-centered cubic lattice in the metal structure. This process is mainly driven by the gradual elevation of the system’s kinetic energy. In the experiment, the amorphous Al alloys with higher manganese composition (20.5%) were investigated, matching the simulated amorphous structures. Overall, the results suggest that the increase in number of grains in Al lattices diminishes the stress–strain impact due to a more disordered atomic-scale (amorphous) metal composition.


Author(s):  
Robert C. Rau ◽  
Robert L. Ladd

Recent studies have shown the presence of voids in several face-centered cubic metals after neutron irradiation at elevated temperatures. These voids were found when the irradiation temperature was above 0.3 Tm where Tm is the absolute melting point, and were ascribed to the agglomeration of lattice vacancies resulting from fast neutron generated displacement cascades. The present paper reports the existence of similar voids in the body-centered cubic metals tungsten and molybdenum.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 706
Author(s):  
Yue Su ◽  
Songqin Xia ◽  
Jia Huang ◽  
Qingyuan Liu ◽  
Haocheng Liu ◽  
...  

Recently, the irradiation behaviors of multi-component alloys have stimulated an increasing interest due to their ability to suppress the growth of irradiation defects, though the mostly studied alloys are limited to face centered cubic (fcc) structured multi-component alloys. In this work, two single-phase body centered cubic (bcc) structured multi-component alloys (CrFeV, AlCrFeV) with different lattice distortions were prepared by vacuum arc melting, and the reference of α-Fe was also prepared. After 6 MeV Au ions irradiation to over 100 dpa (displacement per atom) at 500 °C, the bcc structured CrFeV and AlCrFeV exhibited significantly improved irradiation swelling resistance compared to α-Fe, especially AlCrFeV. The AlCrFeV alloy possesses superior swelling resistance, showing no voids compared to α-Fe and CrFeV alloy, and scarce irradiation softening appears in AlCrFeV. Owing to their chemical complexity, it is believed that the multi-component alloys under irradiation have more defect recombination and less damage accumulation. Accordingly, we discuss the origin of irradiation resistance and the Al effect in the studied bcc structured multi-component alloys.


2009 ◽  
Vol 18 (08) ◽  
pp. 1159-1173 ◽  
Author(s):  
CASEY MANN ◽  
JENNIFER MCLOUD-MANN ◽  
RAMONA RANALLI ◽  
NATHAN SMITH ◽  
BENJAMIN MCCARTY

This article concerns the minimal knotting number for several types of lattices, including the face-centered cubic lattice (fcc), two variations of the body-centered cubic lattice (bcc-14 and bcc-8), and simple-hexagonal lattices (sh). We find, through the use of a computer algorithm, that the minimal knotting number in sh is 20, in fcc is 15, in bcc-14 is 13, and bcc-8 is 18.


1976 ◽  
Vol 31 (12) ◽  
pp. 1539-1542 ◽  
Author(s):  
H. M. Ledbetter

Abstract The Poisson ratio υ of a polycrystalline aggregate was calculated for both the face-centered cubic and the body-centered cubic cases. A general two-body central-force interatomatic potential was used. Deviations of υ from 0.25 were verified. A lower value of υ is predicted for the f.c.c. case than for the b.c.c. case. Observed values of υ for twenty-three cubic elements are discussed in terms of the predicted values. Effects of including volume-dependent electron-energy terms in the inter-atomic potential are discussed.


Sign in / Sign up

Export Citation Format

Share Document