Comparative study of the oxide scale thermally grown on titanium alloys by ion beam analysis techniques and scanning electron microscopy

2008 ◽  
Vol 23 (8) ◽  
pp. 2245-2253 ◽  
Author(s):  
A. Gutiérrez ◽  
F. Pászti ◽  
A. Climent-Font ◽  
J.A. Jiménez ◽  
M.F. López

In the present work, the oxide layers developed at elevated temperature on three vanadium-free titanium alloys, of interest as implant biomaterials, were studied by Rutherford backscattering spectroscopy, elastic recoil detection analysis, and scanning electron microscopy. The chemical composition of the alloys investigated, in wt%, was Ti–7Nb–6Al, Ti–13Nb–13Zr, and Ti–15Zr–4Nb. Upon oxidation in air at 750 °C, an oxide scale forms, with a chemical composition, morphology, and thickness that depend on the alloy composition and the oxidation time. After equal exposure time, the Ti–7Nb–6Al alloy exhibited the thinnest oxide layer due to the formation of an Al2O3-rich layer. The oxide scale of the two TiNbZr alloys is mainly composed of Ti oxides, with small amounts of Nb and Zr dissolved. For both TiNbZr alloys, the role of the Nb-content on the mechanism of the oxide formation is discussed.

Author(s):  
M. Spector ◽  
A. C. Brown

Ion beam etching and freeze fracture techniques were utilized in conjunction with scanning electron microscopy to study the ultrastructure of normal and diseased human hair. Topographical differences in the cuticular scale of normal and diseased hair were demonstrated in previous scanning electron microscope studies. In the present study, ion beam etching and freeze fracture techniques were utilized to reveal subsurface ultrastructural features of the cuticle and cortex.Samples of normal and diseased hair including monilethrix, pili torti, pili annulati, and hidrotic ectodermal dysplasia were cut from areas near the base of the hair. In preparation for ion beam etching, untreated hairs were mounted on conducting tape on a conducting silicon substrate. The hairs were ion beam etched by an 18 ky argon ion beam (5μA ion current) from an ETEC ion beam etching device. The ion beam was oriented perpendicular to the substrate. The specimen remained stationary in the beam for exposures of 6 to 8 minutes.


Biology ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 51
Author(s):  
Michela Relucenti ◽  
Giuseppe Familiari ◽  
Orlando Donfrancesco ◽  
Maurizio Taurino ◽  
Xiaobo Li ◽  
...  

Several imaging methodologies have been used in biofilm studies, contributing to deepening the knowledge on their structure. This review illustrates the most widely used microscopy techniques in biofilm investigations, focusing on traditional and innovative scanning electron microscopy techniques such as scanning electron microscopy (SEM), variable pressure SEM (VP-SEM), environmental SEM (ESEM), and the more recent ambiental SEM (ASEM), ending with the cutting edge Cryo-SEM and focused ion beam SEM (FIB SEM), highlighting the pros and cons of several methods with particular emphasis on conventional SEM and VP-SEM. As each technique has its own advantages and disadvantages, the choice of the most appropriate method must be done carefully, based on the specific aim of the study. The evaluation of the drug effects on biofilm requires imaging methods that show the most detailed ultrastructural features of the biofilm. In this kind of research, the use of scanning electron microscopy with customized protocols such as osmium tetroxide (OsO4), ruthenium red (RR), tannic acid (TA) staining, and ionic liquid (IL) treatment is unrivalled for its image quality, magnification, resolution, minimal sample loss, and actual sample structure preservation. The combined use of innovative SEM protocols and 3-D image analysis software will allow for quantitative data from SEM images to be extracted; in this way, data from images of samples that have undergone different antibiofilm treatments can be compared.


Langmuir ◽  
2020 ◽  
Vol 36 (11) ◽  
pp. 2816-2822 ◽  
Author(s):  
Takashi Kakubo ◽  
Katsunori Shimizu ◽  
Akemi Kumagai ◽  
Hiroaki Matsumoto ◽  
Miki Tsuchiya ◽  
...  

2014 ◽  
Vol 254 (3) ◽  
pp. 109-114 ◽  
Author(s):  
C. KIZILYAPRAK ◽  
J. DARASPE ◽  
B.M. HUMBEL

2018 ◽  
Vol 24 (S1) ◽  
pp. 1444-1445 ◽  
Author(s):  
Kenneth J. Hayworth ◽  
David Peale ◽  
Zhiyuan Lu ◽  
C. Shan Xu ◽  
Harald F. Hess

PLoS ONE ◽  
2013 ◽  
Vol 8 (2) ◽  
pp. e57405 ◽  
Author(s):  
Bohumil Maco ◽  
Anthony Holtmaat ◽  
Marco Cantoni ◽  
Anna Kreshuk ◽  
Christoph N. Straehle ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document