Response of power-law-viscoelastic and time-dependent materials to rate jumps

2009 ◽  
Vol 24 (3) ◽  
pp. 853-862 ◽  
Author(s):  
A.H.W. Ngan ◽  
B. Tang

Nonlinear viscoelastic problems are in general not analytically solvable. However, it is shown here that, for any viscoelastic materials describable by a constitutive law with linear elastic and (in general) nonlinear viscous elements arranged in any network fashion, such as the Maxwell or standard linear solid arrangements, it is always possible to eliminate the viscous terms by replacing the displacement, strain, and stress fields of the problem by the jumps in rates of these fields. After the viscous terms are eliminated, the problem is reduced to a linear elastic problem defined on the same spatial domain and with the same elastic constant as in the original viscoelastic problem. Such a reduced elastic problem is analytically solvable in many practical cases, and the solution yields a relation between jumps in the load rate and the displacement rate, pertinent to the boundary conditions in the original problem. Such a relation can often be used as the basis for an experimental scheme to measure the elastic constants of materials. The material can be time- or strain-dependent, and the value of the elastic constant measured corresponds to the time instant or the strain value when the jump in load or displacement rate is implemented.

2009 ◽  
Vol 297 (1) ◽  
pp. H208-H222 ◽  
Author(s):  
Philippe Reymond ◽  
Fabrice Merenda ◽  
Fabienne Perren ◽  
Daniel Rüfenacht ◽  
Nikos Stergiopulos

A distributed model of the human arterial tree including all main systemic arteries coupled to a heart model is developed. The one-dimensional (1-D) form of the momentum and continuity equations is solved numerically to obtain pressures and flows throughout the systemic arterial tree. Intimal shear is modeled using the Witzig-Womersley theory. A nonlinear viscoelastic constitutive law for the arterial wall is considered. The left ventricle is modeled using the varying elastance model. Distal vessels are terminated with three-element windkessels. Coronaries are modeled assuming a systolic flow impediment proportional to ventricular varying elastance. Arterial dimensions were taken from previous 1-D models and were extended to include a detailed description of cerebral vasculature. Elastic properties were taken from the literature. To validate model predictions, noninvasive measurements of pressure and flow were performed in young volunteers. Flow in large arteries was measured with MRI, cerebral flow with ultrasound Doppler, and pressure with tonometry. The resulting 1-D model is the most complete, because it encompasses all major segments of the arterial tree, accounts for ventricular-vascular interaction, and includes an improved description of shear stress and wall viscoelasticity. Model predictions at different arterial locations compared well with measured flow and pressure waves at the same anatomical points, reflecting the agreement in the general characteristics of the “generic 1-D model” and the “average subject” of our volunteer population. The study constitutes a first validation of the complete 1-D model using human pressure and flow data and supports the applicability of the 1-D model in the human circulation.


2019 ◽  
Vol 26 (1) ◽  
pp. 197-208
Author(s):  
Fei Li ◽  
QiLin Zhao ◽  
Haosen Chen ◽  
Sheng Luo

AbstractPreload is the primary reason why pre-tightened tooth connections (PTTC) can transfer relatively large loads. However, creep of the composite would cause the preload relaxation, resulting in reducing bearing capacity of the connection. To study the preload relaxation of PTTC caused by the creep of composites, a prediction formula is deduced by converting the viscoelastic problem to an elastic problem using Laplace transform. Meanwhile, long-term experimental research on the preload relaxation of composite pre-tightened tooth connection with different initial preloads and different geometry sizes was made. The theoretical results are compared with experimental data obtained by long-term experiment, and the results indicate that the calculation formula can predict the preload relaxation well in linear viscoelastic state. The preload relaxation mainly occurs at the beginning of loading and it tends to be steady in the middle and later periods.


Author(s):  
Laura Galuppi ◽  
Gianni Royer-Carfagni

Prandtl's membrane analogy for the torsion problem of prismatic homogeneous bars is extended to multi-material cross sections. The linear elastic problem is governed by the same equations describing the deformation of an inflated membrane, differently tensioned in regions that correspond to the domains hosting different materials in the bar cross section, in a way proportional to the inverse of the material shear modulus. Multi-connected cross sections correspond to materials with vanishing stiffness inside the holes, implying infinite tension in the corresponding portions of the membrane. To define the interface constrains that allow to apply such a state of prestress to the membrane, a physical apparatus is proposed, which can be numerically modelled with a two-dimensional mesh implementable in commercial finite-element model codes. This approach presents noteworthy advantages with respect to the three-dimensional modelling of the twisted bar.


1999 ◽  
Vol 121 (5) ◽  
pp. 462-471 ◽  
Author(s):  
K. D. Costa ◽  
F. C. P. Yin

Indentation using the atomic force microscope (AFM) has potential to measure detailed micromechanical properties of soft biological samples. However, interpretation of the results is complicated by the tapered shape of the AFM probe tip, and its small size relative to the depth of indentation. Finite element models (FEMs) were used to examine effects of indentation depth, tip geometry, and material nonlinearity and heterogeneity on the finite indentation response. Widely applied infinitesimal strain models agreed with FEM results for linear elastic materials, but yielded substantial errors in the estimated properties for nonlinear elastic materials. By accounting for the indenter geometry to compute an apparent elastic modulus as a function of indentation depth, nonlinearity and heterogeneity of material properties may be identified. Furthermore, combined finite indentation and biaxial stretch may reveal the specific functional form of the constitutive law—a requirement for quantitative estimates of material constants to be extracted from AFM indentation data.


1966 ◽  
Vol 33 (4) ◽  
pp. 924-926 ◽  
Author(s):  
G. M. C. Fisher ◽  
M. J. Leitman

A correspondence principle for free vibrations in the classical linearized theory of viscoelasticity is established. It is shown that, for motions which are either irrotational or solenoidal, there is always an associated elastic problem with the following properties: (a) Every mode shape for the viscoelastic problem is also a mode shape for the elastic problem; and (b) the viscoelastic frequencies can, in principle, be calculated from a knowledge of the elastic spectrum and the relevant relaxation function. It is further shown that, in general, for motions which are neither irrotational nor solenoidal, this correspondence exists only for the restricted class of viscoelastic materials for which the behavior depends essentially upon one relaxation function. The paper concludes with the observation that the correspondence also exists for those approximate theories in which there appears only one relaxation function.


Sign in / Sign up

Export Citation Format

Share Document