Electrochemical performance of all-solid-state lithium secondary batteries using Li4Ti5O12 electrode and Li2S–P2S5 solid electrolytes

2010 ◽  
Vol 25 (8) ◽  
pp. 1548-1553 ◽  
Author(s):  
Hirokazu Kitaura ◽  
Akitoshi Hayashi ◽  
Kiyoharu Tadanaga ◽  
Masahiro Tatsumisago

All-solid-state Li–In/Li4Ti5O12 cells using Li2S–P2S5 solid electrolytes were assembled to investigate their electrochemical properties in the wide voltage range of 0–3 V (versus Li). The Li/Li4Ti5O12 cells using 1 M LiPF6 in ethylene carbonate and diethyl carbonate were fabricated for comparison with the all-solid-state cells. The capacity of the all-solid-state cell using the 70Li2S·27P2S5·3P2O5 (mol%) solid electrolyte decreased with an increase in the current density as well as the cell using the liquid electrolyte. However, the all-solid-state cell was charged and discharged even at a high current density of 10 mA/cm2. The all-solid-state cell was cycled at 1.3 mA/cm2 and retained 90% of the first reversible capacity of about 120 mAh/g after 500 cycles. The all-solid-state cell cycling at 100 °C showed the small overpotential and reversible capacity of about 120 mAh/g at 13 mA/cm2.

2017 ◽  
Vol 5 (43) ◽  
pp. 22512-22518 ◽  
Author(s):  
Yiqiong Zhang ◽  
Yanbing Lu ◽  
Shi Feng ◽  
Dongdong Liu ◽  
Zhaoling Ma ◽  
...  

With unique hollow frameworks decorated with well-dispersed ultrafine ZnO nanoparticles, the h-ZIF-8@ZnO hybrids exhibit good cycling performance with a reversible capacity of ∼637.9 mA h g−1 at a high current density of 1.0 A g−1 after 500 cycles.


1998 ◽  
Vol 548 ◽  
Author(s):  
Gregory J. Moore ◽  
M. Stanley Whittingham

ABSTRACTClays have been synthesized and several types of molecules have been intercalated into them to enhance their ionic conductivity. The clay has the molecular formula of Litaeniolite, Li(Mg2Li)Si4O10F2, and the inserted molecules include PEO and two varieties of sulfone, tetramethylene sulfone and ethylmethyl sulfone. These have been made in the interest of electrolytes in lithium secondary batteries in order to produce a truly solid state cell. The products have been thoroughly characterized by x-ray diffraction to verify the uptake of the molecules into the layers, thermal analysis to observe the stabilization of the intercalated molecules, along with impedance measurements to test their conductivity.


Nanoscale ◽  
2014 ◽  
Vol 6 (12) ◽  
pp. 6661-6667 ◽  
Author(s):  
S. Amaresh ◽  
K. Karthikeyan ◽  
K. J. Kim ◽  
Y. G. Lee ◽  
Y. S. Lee

The ionic conductivity of a Li–Al–Ge–P–S based thio-LISICON solid electrolyte is equivalent to that of a conventional organic liquid electrolyte used in lithium secondary batteries. The usage of aluminum brings down the cost of the solid electrolyte making it suitable for commercial solid state batteries.


2005 ◽  
Vol 146 (1-2) ◽  
pp. 496-500 ◽  
Author(s):  
Akitoshi Hayashi ◽  
Takanori Konishi ◽  
Kiyoharu Tadanaga ◽  
Tsutomu Minami ◽  
Masahiro Tatsumisago

2021 ◽  
Vol 8 ◽  
Author(s):  
Junfeng Li ◽  
Xianzi Zhou ◽  
Kai Lu ◽  
Chao Ma ◽  
Liang Li ◽  
...  

Molybdenum sulfide (MoS2) has become a potential anode of lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) due to its high theoretical capacity and low cost. However, the volume expansion, poor electrical conductivity and dissolution of polysulfides in the electrolyte during the cycling process severely limited its applications. Herein, few-layered MoS2@N-doped carbon (F-MoS2@NC) was synthesized through a facile solvothermal and annealing process. It was found that the addition of N-doped carbon precursor could significantly promote the formation of few-layered MoS2 and improve the performances of lithium and sodium storage. A high reversible capacity of 482.6 mA h g−1 at a high current density of 2000 mA g−1 could be obtained for LIBs. When used as anode material for SIBs, F-MoS2@NC hybrids could maintain a reversible capacity of 171 mA h g−1 at a high current density of 1,000 mA g−1 after 600 cycles. This work should provide new insights into carbon hybrid anode materials for both LIBs and SIBs.


Author(s):  
Xueying Sun ◽  
Satoshi Hori ◽  
Yuxiang Li ◽  
Yuto Yamada ◽  
Kota Suzuki ◽  
...  

A thin coating layer between the cathode active materials (CAMs) and solid electrolytes (SEs) is indispensable for alleviating the reaction at the CAM/SE interface and thereby enhancing the reversible capacity...


2013 ◽  
Vol 1496 ◽  
Author(s):  
Sylvain Boulineau ◽  
Jean-Marie Tarascon ◽  
Vincent Seznec ◽  
Virginie Viallet

ABSTRACTHighly ion-conductive Li6PS5Cl Li-argyrodites were prepared through a high energy ball milling. Electrical and electrochemical properties were investigated. Ball-milled compounds exhibit a high conductivity of 1.33×10−4 S/cm with an activation energy of 0.3-0.4 eV and an electrochemical stability up to 7V vs. lithium. These results are obtained after only 10 hours of milling and with no additional heat treatment.To validate the use of the Li6PS5Cl-based solid electrolyte, all-solid-state batteries using LiCoO2 and Li4Ti5O12 as active material have been realized. The optimization of the electrode composition led to a maximum of 46 and 27 mAh per gram of composite for LiCoO2 and Li4Ti5O12-based half-cells respectively. The assembled all-solid-state LiCoO2 / Li6PS5Cl / Li4Ti5O12 battery presents a sustainable reversible capacity of 27 mAh per gram of active material and a coulomb efficiency close to 99%.


Sign in / Sign up

Export Citation Format

Share Document