Synchronous chemical vapor deposition of large-area hybrid graphene–carbon nanotube architectures

2013 ◽  
Vol 28 (7) ◽  
pp. 958-968 ◽  
Author(s):  
Maziar Ghazinejad ◽  
Shirui Guo ◽  
Wei Wang ◽  
Mihrimah Ozkan ◽  
Cengiz S. Ozkan

Abstract

2016 ◽  
Vol 31 (7) ◽  
pp. 917-922 ◽  
Author(s):  
Rudresh Ghosh ◽  
Joon-Seok Kim ◽  
Anupam Roy ◽  
Harry Chou ◽  
Mary Vu ◽  
...  

Abstract


2011 ◽  
Vol 26 (21) ◽  
pp. 2719-2724 ◽  
Author(s):  
Yunxiao Zheng ◽  
Jian Xie ◽  
Wentao Song ◽  
Shuangyu Liu ◽  
Gaoshao Cao ◽  
...  

Abstract


2012 ◽  
Vol 1440 ◽  
Author(s):  
Aaron S. George ◽  
Maziar Ghazinejad ◽  
Wei Wang ◽  
Isaac Ruiz ◽  
Mihrimah Ozkan ◽  
...  

AbstractSustainable energy is currently limited by the ability of materials to store energy and deliver it on demand. Allotropes of carbon are attractive for their potential for use in energy storage due to low weight, high chemical stability and low production cost. Carbon nanotubes and graphene can be combined to provide an effective three-dimensional material with high conductivity and high surface area. We demonstrate the use of block copolymers to obtain patterned arrays of iron nanoparticles which give rise to ordered carbon nanotubes with good size distribution. A one-step chemical vapor deposition process for large-area fabrication of the graphene and carbon nanotube hybrid structure is described. Following chemical vapor deposition the hybrid material is demonstrated in a supercapacitor device. The fabricated supercapacitor exhibits high electrical conductivity, and has potential for extremely high energy storage capability.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Zhenzhen Tian ◽  
Xiaoming Yuan ◽  
Ziran Zhang ◽  
Wuao Jia ◽  
Jian Zhou ◽  
...  

AbstractGrowth of high-quality III–V nanowires at a low cost for optoelectronic and electronic applications is a long-term pursuit of research. Still, controlled synthesis of III–V nanowires using chemical vapor deposition method is challenge and lack theory guidance. Here, we show the growth of InP and GaP nanowires in a large area with a high density using a vacuum chemical vapor deposition method. It is revealed that high growth temperature is required to avoid oxide formation and increase the crystal purity of InP nanowires. Introduction of a small amount of Ga into the reactor leads to the formation of GaP nanowires instead of ternary InGaP nanowires. Thermodynamic calculation within the calculation of phase diagrams (CALPHAD) approach is applied to explain this novel growth phenomenon. Composition and driving force calculations of the solidification process demonstrate that only 1 at.% of Ga in the catalyst is enough to tune the nanowire formation from InP to GaP, since GaP nucleation shows a much larger driving force. The combined thermodynamic studies together with III–V nanowire growth studies provide an excellent example to guide the nanowire growth.


ACS Omega ◽  
2021 ◽  
Author(s):  
Muhammad Aniq Shazni Mohammad Haniff ◽  
Nur Hamizah Zainal Ariffin ◽  
Poh Choon Ooi ◽  
Mohd Farhanulhakim Mohd Razip Wee ◽  
Mohd Ambri Mohamed ◽  
...  

ACS Nano ◽  
2011 ◽  
Vol 5 (9) ◽  
pp. 7198-7204 ◽  
Author(s):  
Michael E. Ramón ◽  
Aparna Gupta ◽  
Chris Corbet ◽  
Domingo A. Ferrer ◽  
Hema C. P. Movva ◽  
...  

ACS Nano ◽  
2010 ◽  
Vol 4 (12) ◽  
pp. 7337-7343 ◽  
Author(s):  
Ryota Yuge ◽  
Jin Miyawaki ◽  
Toshinari Ichihashi ◽  
Sadanori Kuroshima ◽  
Tsutomu Yoshitake ◽  
...  

2014 ◽  
Vol 21 (6) ◽  
pp. 1225-1231
Author(s):  
KyungNam Kang ◽  
Jeonghwan Kim ◽  
Yoonyoung Jin ◽  
Pratul K. Ajmera

Sign in / Sign up

Export Citation Format

Share Document