Computational design of magnetic metal-organic complexes and coordination polymers with spin-switchable functionalities

MRS Bulletin ◽  
2014 ◽  
Vol 39 (7) ◽  
pp. 614-620 ◽  
Author(s):  
Tanusri Saha-Dasgupta ◽  
Peter M. Oppeneer

Abstract

2018 ◽  
Vol 47 (38) ◽  
pp. 13257-13280 ◽  
Author(s):  
Paul J. Saines ◽  
Nicholas C. Bristowe

This perspective paper highlights the insights obtained through experimental and computational probes of magnetic metal–organic frameworks at the atomic scale.


2006 ◽  
Vol 6 (8) ◽  
pp. 1839-1847 ◽  
Author(s):  
Urko García-Couceiro ◽  
Oscar Castillo ◽  
Antonio Luque ◽  
Juan P. García-Terán ◽  
Garikoitz Beobide ◽  
...  

2020 ◽  
Vol 8 (3) ◽  
pp. 163-190
Author(s):  
Benjamin Steinborn ◽  
Ulrich Lächelt

: Coordinative interactions between multivalent metal ions and drug derivatives with Lewis base functions give rise to nanoscale coordination polymers (NCPs) as delivery systems. As the pharmacologically active agent constitutes a main building block of the nanomaterial, the resulting drug loadings are typically very high. By additionally selecting metal ions with favorable pharmacological or physicochemical properties, the obtained NCPs are predominantly composed of active components which serve individual purposes, such as pharmacotherapy, photosensitization, multimodal imaging, chemodynamic therapy or radiosensitization. By this approach, the assembly of drug molecules into NCPs modulates pharmacokinetics, combines pharmacological drug action with specific characteristics of metal components and provides a strategy to generate tailorable multifunctional nanoparticles. This article reviews different applications and recent examples of such highly functional nanopharmaceuticals with a high ‘material economy’. : Lay Summary: Nanoparticles, that are small enough to circulate in the bloodstream and can carry cargo molecules, such as drugs, imaging or contrast agents, are attractive materials for pharmaceutical applications. A high loading capacity is a generally aspired parameter of nanopharmaceuticals to minimize patient exposure to unnecessary nanomaterial. Pharmaceutical agents containing Lewis base functions in their molecular structure can directly be assembled into metal-organic nanopharmaceuticals by coordinative interaction with metal ions. Such coordination polymers generally feature extraordinarily high loading capacities and the flexibility to encapsulate different agents for a simultaneous delivery in combination therapy or ‘theranostic’ applications.


2021 ◽  
Vol 9 (15) ◽  
pp. 5082-5087
Author(s):  
Yu Gong ◽  
Wang-Kang Han ◽  
Hui-Shu Lu ◽  
Qing-Tao Hu ◽  
Huan Tu ◽  
...  

New Hofmann-type metal–organic frameworks display rare and complete ligand exchange induced single crystal to single crystal transformations from 3D frameworks to 2D layers, accompanied by magnetic properties transition from two-step SCO behavior to hysteretic SCO behavior.


2021 ◽  
Author(s):  
Faezeh Taghavi ◽  
Amir Khojastehnezhad ◽  
Reza Khalifeh ◽  
Maryam Rajabzadeh ◽  
Fahimeh Rezaei ◽  
...  

The first report of the use of an acidic magnetic metal organic framework for the chemical fixation of CO2 as an environmentally friendly reaction.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1759
Author(s):  
Neda Motamedi ◽  
Mahmood Barani ◽  
Azadeh Lohrasbi-Nejad ◽  
Mojtaba Mortazavi ◽  
Ali Riahi-Medvar ◽  
...  

The improvement in the enzyme activity of Aspergillus flavus urate oxidase (Uox) was attained by immobilizing it on the surface of a Ni-based magnetic metal–organic framework (NimMOF) nanomaterial; physicochemical properties of NimMOF and its application as an enzyme stabilizing support were evaluated, which revealed a significant improvement in its stability upon immobilization on NimMOF (Uox@NimMOF). It was affirmed that while the free Uox enzyme lost almost all of its activity at ~40–45 °C, the immobilized Uox@NimMOF retained around 60% of its original activity, even retaining significant activity at 70 °C. The activation energy (Ea) of the enzyme was calculated to be ~58.81 kJ mol−1 after stabilization, which is approximately half of the naked Uox enzyme. Furthermore, the external spectroscopy showed that the MOF nanomaterials can be coated by hydrophobic areas of the Uox enzyme, and the immobilized enzyme was active over a broad range of pH and temperatures, which bodes well for the thermal and long-term stability of the immobilized Uox on NimMOF.


Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 204
Author(s):  
Yu Li ◽  
Chumin Liang ◽  
Xunzhong Zou ◽  
Jinzhong Gu ◽  
Marina V. Kirillova ◽  
...  

Three 2D coordination polymers, [Cu2(µ4-dpa)(bipy)2(H2O)]n∙6nH2O (1), [Mn2(µ6-dpa)(bipy)2]n (2), and [Zn2(µ4-dpa)(bipy)2(H2O)2]n·2nH2O (3), were prepared by a hydrothermal method using metal(II) chloride salts, 3-(2′,4′-dicarboxylphenoxy)phthalic acid (H4dpa) as a linker, as well as 2,2′-bipyridine (bipy) as a crystallization mediator. Compounds 1–3 were obtained as crystalline solids and fully characterized. The structures of 1–3 were established by single-crystal X-ray diffraction, revealing 2D metal-organic networks of sql, 3,6L66, and hcb topological types. Thermal stability and catalytic behavior of 1–3 were also studied. In particular, zinc(II) coordination polymer 3 functions as a highly active and recoverable heterogeneous catalyst in the mild cyanosilylation of benzaldehydes with trimethylsilyl cyanide to give cyanohydrin derivatives. The influence of various parameters was investigated, including a time of reaction, a loading of catalyst and its recycling, an effect of solvent type, and a substrate scope. As a result, up to 93% product yields were attained in a catalyst recoverable and reusable system when exploring 4-nitrobenzaldehyde as a model substrate. This study contributes to widening the types of multifunctional polycarboxylic acid linkers for the design of novel coordination polymers with notable applications in heterogeneous catalysis.


Author(s):  
Ayushi Singh ◽  
Ashish Kumar Singh ◽  
Jian-Qiang Liu ◽  
Abhinav Kumar

Metal-organic frameworks (MOFs) or coordination polymers (CPs) are regarded as new variety of materials that find potential applications in plethora of areas such as gas/small molecule absorption/separation, gas storage, membranes...


Sign in / Sign up

Export Citation Format

Share Document