Physical Principles of Ionic Polymer–Metal Composites as Electroactive Actuators and Sensors

MRS Bulletin ◽  
2008 ◽  
Vol 33 (3) ◽  
pp. 190-195 ◽  
Author(s):  
Il-Seok Park ◽  
Kwangmok Jung ◽  
Doyeon Kim ◽  
Sang-Mun Kim ◽  
Kwang J. Kim

AbstractThis article introduces and considers the fundamental understanding of ionic polymer–metal composites (IPMCs) functioning as electroactive actuators and sensors. IPMCs consist of ion-exchange polymers acting as base materials and metal layers functioning as electrodes. The actuation and sensing abilities of IPMCs are dependent upon the components of ion-exchange polymers (ionic groups and cations) and electrode materials. In order to improve the bending and sensing performance of the IPMCs, an integral, two-step electroplating technique and a requisite dispersion agent are used during fabrication. Electroding materials also play a key role in determining the properties of IPMCs, and numerous methods in electroding have been tried, making use of various metals, carbon nanotubes, and composites. So far, IPMCs have been adapted as robotic actuators, artificial muscles, and electrical sensors. In the future, it is expected that IPMCs will broadly spread their roles from small-sized biomedical devices to large-scale actuators for aerospace as well as many industrial applications.

2020 ◽  
Vol 61 (4) ◽  
pp. 601-608 ◽  
Author(s):  
N. I. Alekseev ◽  
V. V. Bagrets ◽  
A. P. Broyko ◽  
A. V. Korlyakov ◽  
V. E. Kalenov ◽  
...  

2009 ◽  
Vol 419-420 ◽  
pp. 785-788
Author(s):  
Xiu Fen Ye ◽  
Yu Dong Su ◽  
Shu Xiang Guo

An Ionic polymer metal composites (IPMC) actuated 3D swimming microrobot is presented first. Inspired by biologic fins, passive plastic fin is attached to the IPMC strip to increase the thrust. Infrared sensors are equipped for wireless control and autonomous navigation. Then propulsive efficiency analyses are carried out. From the water electrolysis influence analysis of the IPMC, the best working voltage is confirmed. Finally, a two parts IPMC actuator is presented to improve the propulsive efficiency of the microrobot after the analysis of propulsive efficiency of caudal fin.


Author(s):  
Muhammad Farid ◽  
Zhao Gang ◽  
Tran Linh Khuong ◽  
Zhuang Zhi Sun ◽  
Naveed Ur Rehman ◽  
...  

Biomimetic is the field of engineering in which biological creatures and their functions are investigated and are used as the basis for the design and manufacturing of machines. Ionic Polymer Metal Composite (IPMC) is a smart material which has demonstrated a meaningful bending and tip force after the application of a low voltage. It is light-weighted, flexible, easily actuated, multi-directional applicable and requires simple manufacturing. Resultantly, IPMC has attracted scientists and researchers to analyze it further and consider it for any industrial and biomimetic applications. Presently, the research on IPMC is bi-directional oriented. A few groups of researchers are busy to find out the causes for the weaknesses of the material and to find out any remedy for them. The second class of scientists is exploring new areas of applications where IPMC material can be used. Although, the application zone of IPMC is ranging from micropumps diaphragms to surgical holding devices, this paper provides an overview of the IPMC application in biomimetic and biomedical field.


2015 ◽  
Vol 38 (3) ◽  
pp. 479-488 ◽  
Author(s):  
Gang Zhao ◽  
Zhuangzhi Sun ◽  
Huajun Guo ◽  
Jinxing Zheng ◽  
Haojun Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document