scholarly journals The Hydrogen Fuel Alternative

MRS Bulletin ◽  
2008 ◽  
Vol 33 (4) ◽  
pp. 421-428 ◽  
Author(s):  
G.W. Crabtree ◽  
M.S. Dresselhaus

AbstractThe cleanliness of hydrogen and the efficiency of fuel cells taken together offer an appealing alternative to fossil fuels. Implementing hydrogen-powered fuel cells on a significant scale, however, requires major advances in hydrogen production, storage, and use. Splitting water renewably offers the most plentiful and climate-friendly source of hydrogen and can be achieved through electrolytic, photochemical, or biological means. Whereas presently available hydride compounds cannot easily satisfy the competing requirements for on-board storage of hydrogen for transportation, nanoscience offers promising new approaches to this challenge. Fuel cells offer potentially efficient production of electricity for transportation and grid distribution, if cost and performance challenges of components can be overcome. Hydrogen offers a variety of routes for achieving a transition to a mix of renewable fuels.

2005 ◽  
Vol 895 ◽  
Author(s):  
Marc Binder ◽  
Michael Faltenbacher ◽  
Matthias Fischer

AbstractFuel cells have the potential to offer an alternative propulsion system to convential internal combustion engines used in transportation at the present time. As a result fuel cells may provide consumers a cleaner and more efficient technology. Fuel cells are powered with hydrogen fuel which can be produced from various energy sources, which include renewable sources of energy or conventional fossil fuel. Thus, the emerging hydrogen infrastructure needs to be addressed carefully.A consortium of industries, research institutes and several European cities launched the EU-project CUTE (Clean Urban Transport in Europe), whose aim is not only to develop and demonstrate 30 fuel cell busses and the accompanying infrastructure in 10 European cities, but also assess the environmental impacts. Within the project scope the potential of fuel cell powered transport systems for reducing environmental influences such as greenhouse effect, improving the quality of the atmosphere and conserving fossil resources is assessed. This first large scale test run of fuel cell transportation systems is the best possible information base to give real life numbers about environmental impacts of a fuel cell system including hydrogen used as fuel.Meanwhile the use of hydrogen fuel is mostly considered as environmental friendly. However a statement about the actual environmental impacts is only possible by regarding the entire Life Cycle of the hydrogen, which include its production and use. Within CUTE different routes of the hydrogen production have been assessed: hydrogen production via electrolysis and steam reforming, considering different boundary conditions, e.g. country specific energy production/ supply, different ways for electricity production (e.g. wind power, geothermal energy etc.) etc.This presentation will show the environmental footprint of these routes (Life Cycle Assessment results), which enable the comparison of the environmental impacts of the different hydrogen production routes and the transportation system considering the total life cycle (production of FC bus, operation and end of life) along with diesel and natural gas as “conventional” fuels for bus operation.


2017 ◽  
Vol 4 (1) ◽  
pp. 25 ◽  
Author(s):  
John Vourdoubas ◽  
Vasiliki K. Skoulou

The exploitation of rich in sugars lingo-cellulosic residue of carob pods for bio-ethanol and bio-electricity generation has been investigated. The process could take place in two (2) or three (3) stages including: a) bio-ethanol production originated from carob pods, b) direct exploitation of bio-ethanol to fuel cells for electricity generation, and/or c) steam reforming of ethanol for hydrogen production and exploitation of the produced hydrogen in fuel cells for electricity generation. Surveying the scientific literature it has been found that the production of bio-ethanol from carob pods and electricity fed to the ethanol fuel cells for hydrogen production do not present any technological difficulties. The economic viability of bio-ethanol production from carob pods has not yet been proved and thus commercial plants do not yet exist. The use, however, of direct fed ethanol fuel cells and steam reforming of ethanol for hydrogen production are promising processes which require, however, further research and development (R&D) before reaching demonstration and possibly a commercial scale. Therefore the realization of power generation from carob pods requires initially the investigation and indication of the appropriate solution of various technological problems. This should be done in a way that the whole integrated process would be cost effective. In addition since the carob tree grows in marginal and partly desertified areas mainly around the Mediterranean region, the use of carob’s fruit for power generation via upgrading of its waste by biochemical and electrochemical processes will partly replace fossil fuels generated electricity and will promote sustainability.


Author(s):  
Jiayi Tang ◽  
Chao Su ◽  
Yijun Zhong ◽  
Zongping Shao

The shortage of fossil fuels triggers a global concern for environmental issues. As a result, fuel cells designed to generate electricity efficiently from clean and renewable fuels have gained increasing...


Author(s):  
Padmavathi Rajangam

To reduce reliance on fossil fuels and increase demands for clean energy technology worldwide, there is currently a growing interest in the use of fuel cells as energy-efficient and environmentally-friendly power generators. With this inevitable depletion, fossil fuels will not be able to respond to energy demand for future. Among all major types of fuel cells, hydrogen fuel cells (HFCs) are in the forefront stage and have gained substantial attention for vehicle and portable applications, which is composed of a cathode, an anode, and a PEM. The heart of the fuel cells is membrane electrode assembly (MEA). An electro-deposition technique for preparing the nano-catalyst layer in PEMFCs has been designed, which may enable an increase in the level of Pt utilization currently achieved in these systems. Functionalization process has been done using a mixture of concentrated nitric acid and sulfuric acid in refluxing condition. The hydrocarbon-based polymer membrane has been used as electrolyte part.


Author(s):  
Debajyoti Bose

Hydrogen is the cleanest fuel known to man and the most prominent alternative to carbon-based fuels, although it is not available as a free gas on earth, it can be produced from various sources using the correct combination of pressure and temperature. The deep time that our planet has given life has allowed it to grow from a tiny seed of genetic possibility to a planet wide web of complexity we are part of today, where today heating, refrigeration, telecommunication and appliances have become vital in everyday life. Production of electricity using fossil fuels has been under the scanner for quite some time now because of their availability and effects on the environment hydrogen emerges out in this scenario as the future fuel and setting the stage towards the hydrogen economy. The clean nature of hydrogen and the efficiency of fuel cells taken together offer an appealing alternative to fossil fuels. This paper reviews the existing infrastructure of hydrogen production and storage, while simultaneously explores the reason why it will be an inevitability in the near future to meet our ever increasing energy needs.


Author(s):  
V. Nageshkar ◽  
M. Srikanth ◽  
E. Jurak ◽  
R. Asmatulu

The world will run out of cheap oil in 20–30 years, causing energy costs to rise, and probably hitting the economies of many nations. Time is now to look for alternative sources of energy, so that a gentle transition from fossil fuels to renewable sources can take place. While several research programs are being conducted mostly on the sun and wind energies, there is one more source that covers 71% of the Earth surface, which is water. Splitting water by electrolysis forms oxygen and hydrogen molecules. Hydrogen has several uses in energy generation, including fuel cells, hydrogen-powered engines and stations, heating, household use, and many others. In this experiment, conductive nanoparticles were dispersed into a tap water at 60 °C with 1M concentration of sulfuric acid solution, and then electric current was passed through the dispersion at different DC voltages, leading to the formation of hydrogen gas at the cathode — the negative side of the cell. The industrial hydrogen production using acid and pressure is very expensive, and at this stage cannot compete with the fossil fuels. However, adding the nanoparticles increased the yield of hydrogen at lower voltages by up to 80%.


Author(s):  
Padmavathi Rajangam

To reduce reliance on fossil fuels and increase demands for clean energy technology worldwide, there is currently a growing interest in the use of fuel cells as energy-efficient and environmentally-friendly power generators. With this inevitable depletion, fossil fuels will not be able to respond to energy demand for future. Among all major types of fuel cells, hydrogen fuel cells (HFCs) are in the forefront stage and have gained substantial attention for vehicle and portable applications, which is composed of a cathode, an anode, and a PEM. The heart of the fuel cells is membrane electrode assembly (MEA). An electro-deposition technique for preparing the nano-catalyst layer in PEMFCs has been designed, which may enable an increase in the level of Pt utilization currently achieved in these systems. Functionalization process has been done using a mixture of concentrated nitric acid and sulfuric acid in refluxing condition. The hydrocarbon-based polymer membrane has been used as electrolyte part.


Sign in / Sign up

Export Citation Format

Share Document