Method for Fabricating Arrays of Graphene Nanoribbons

2011 ◽  
Vol 1362 ◽  
Author(s):  
Pavel Khokhlov ◽  
Pavel Lazarev ◽  
Evgeny Morozov

ABSTRACTThis paper discusses recent progress made in developing an advanced sp2 carbon-based materials that can be produced by wet coating as a thin layer and processed to form highly ordered arrays of Graphene Nanoribbons (GNRs) that attach to the substrate on edge with their planes parallel to each other. The fabrication method is based on carbonization of organic molecules spatially preordered in crystalline film on the substrate. This material, named Ribtan, can be used to fabricate GNRs films over large areas that exhibit a very smooth film surface and can form strong covalent bonds to the substrate. The width (film thickness) of Ribtan GNRs can be controlled precisely down to a few nanometers. We demonstrated advantage of Ribtan material for application in supercapacitors as well as feasibility for use in transparent electrodes, solid tribological coatings, and thin film transistors.

2019 ◽  
Vol 16 (5) ◽  
pp. 478-491 ◽  
Author(s):  
Faizan Abul Qais ◽  
Mohd Sajjad Ahmad Khan ◽  
Iqbal Ahmad ◽  
Abdullah Safar Althubiani

Aims: The aim of this review is to survey the recent progress made in developing the nanoparticles as antifungal agents especially the nano-based formulations being exploited for the management of Candida infections. Discussion: In the last few decades, there has been many-fold increase in fungal infections including candidiasis due to the increased number of immunocompromised patients worldwide. The efficacy of available antifungal drugs is limited due to its associated toxicity and drug resistance in clinical strains. The recent advancements in nanobiotechnology have opened a new hope for the development of novel formulations with enhanced therapeutic efficacy, improved drug delivery and low toxicity. Conclusion: Metal nanoparticles have shown to possess promising in vitro antifungal activities and could be effectively used for enhanced and targeted delivery of conventionally used drugs. The synergistic interaction between nanoparticles and various antifungal agents have also been reported with enhanced antifungal activity.


2021 ◽  
Vol 11 (7) ◽  
pp. 2971
Author(s):  
Siwei Tao ◽  
Congxiao He ◽  
Xiang Hao ◽  
Cuifang Kuang ◽  
Xu Liu

Numerous advances have been made in X-ray technology in recent years. X-ray imaging plays an important role in the nondestructive exploration of the internal structures of objects. However, the contrast of X-ray absorption images remains low, especially for materials with low atomic numbers, such as biological samples. X-ray phase-contrast images have an intrinsically higher contrast than absorption images. In this review, the principles, milestones, and recent progress of X-ray phase-contrast imaging methods are demonstrated. In addition, prospective applications are presented.


Nanomaterials ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 28
Author(s):  
Anastasios I. Tsiotsias ◽  
Nikolaos D. Charisiou ◽  
Ioannis V. Yentekakis ◽  
Maria A. Goula

CO2 methanation has recently emerged as a process that targets the reduction in anthropogenic CO2 emissions, via the conversion of CO2 captured from point and mobile sources, as well as H2 produced from renewables into CH4. Ni, among the early transition metals, as well as Ru and Rh, among the noble metals, have been known to be among the most active methanation catalysts, with Ni being favoured due to its low cost and high natural abundance. However, insufficient low-temperature activity, low dispersion and reducibility, as well as nanoparticle sintering are some of the main drawbacks when using Ni-based catalysts. Such problems can be partly overcome via the introduction of a second transition metal (e.g., Fe, Co) or a noble metal (e.g., Ru, Rh, Pt, Pd and Re) in Ni-based catalysts. Through Ni-M alloy formation, or the intricate synergy between two adjacent metallic phases, new high-performing and low-cost methanation catalysts can be obtained. This review summarizes and critically discusses recent progress made in the field of bimetallic Ni-M (M = Fe, Co, Cu, Ru, Rh, Pt, Pd, Re)-based catalyst development for the CO2 methanation reaction.


Nanomaterials ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 2039 ◽  
Author(s):  
Adriano Panepinto ◽  
Rony Snyders

In this paper, we overview the recent progress we made in the magnetron sputtering-based developments of nano-sculpted thin films intended for energy-related applications such as energy conversion. This paper summarizes our recent experimental work often supported by simulation and theoretical results. Specifically, the development of a new generation of nano-sculpted photo-anodes based on TiO2 for application in dye-sensitized solar cells is discussed.


2016 ◽  
Vol 4 (28) ◽  
pp. 6688-6706 ◽  
Author(s):  
Pengchong Xue ◽  
Jipeng Ding ◽  
Panpan Wang ◽  
Ran Lu

Phosphorescent mechanochromic materials may change their luminescence color and intensity with large spectral shifts under a mechanical force stimulus.


2018 ◽  
Vol 20 (21) ◽  
pp. 4764-4789 ◽  
Author(s):  
Adrian Zajac ◽  
Rafal Kukawka ◽  
Anna Pawlowska-Zygarowicz ◽  
Olga Stolarska ◽  
Marcin Smiglak

The review presents the recent progress made in the field of ionic liquids bearing bioactive components, with a particular emphasis on their use as chemical tools in agriculture and the preservation of agricultural products.


2020 ◽  
Vol 8 (31) ◽  
pp. 6610-6623 ◽  
Author(s):  
Zhijian Wang ◽  
Shengqiang Cai

This review article discusses the recent progress in designing, synthesizing and programming liquid crystal elastomers with different dynamic covalent bonds.


Sign in / Sign up

Export Citation Format

Share Document